000872825 001__ 872825
000872825 005__ 20210130004311.0
000872825 0247_ $$2Handle$$a2128/23988
000872825 0247_ $$2ISSN$$a1866-1777
000872825 020__ $$a978-3-95806-448-5
000872825 037__ $$aFZJ-2020-00295
000872825 041__ $$aEnglish
000872825 1001_ $$0P:(DE-Juel1)161427$$aAndrä, Michael Tobias$$b0$$eCorresponding author$$gmale$$ufzj
000872825 245__ $$aChemical control of the electrical surface properties of n-doped transition metal oxides$$f- 2019-10-30
000872825 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2019
000872825 300__ $$aX, 150 S., S. XI-XXXVIII
000872825 3367_ $$2DataCite$$aOutput Types/Dissertation
000872825 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000872825 3367_ $$2ORCID$$aDISSERTATION
000872825 3367_ $$2BibTeX$$aPHDTHESIS
000872825 3367_ $$02$$2EndNote$$aThesis
000872825 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1579699473_19971
000872825 3367_ $$2DRIVER$$adoctoralThesis
000872825 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Information / Information$$v60
000872825 502__ $$aRWTH Aachen, Diss., 2019$$bDissertation$$cRWTH Aachen$$d2019
000872825 520__ $$aNovel classes of materials are required to meet the technological challenges in modern electronics. By ultimately merging surface physics and band engineering approaches with the chemistry of complex oxides, oxide electronics are believed to meet the rapidly growing demands stemming from the decreasing structure size of electronic applications. A lot is known about the behavior of complex oxides in the bulk. Surfaces and interfaces, however, may show fundamentally varying properties due to the reduced dimension and short diffusion lengths involved. Thus, the surfaces of complex oxide semiconductors and especially their interfaces formed with other complex oxides and metals are expected to play an even more important role in the technological progress of the upcoming decades. In order to pave the way to novel tailored applications, understanding the redox processes at the complex oxide surfaces is essential. Within this thesis, state-of-the-art spectroscopic tools are used that allow for in-situ surface investigations in varying atmospheres thereby demonstrating the differences between surface and bulk chemistry and determine how space charge formation couples the surface chemistry and the electronic properties. By the utilization of ambient pressure photoelectron spectroscopy the previous experimental limitations of an undefined surface state and contamination that occurred due to the $\textit{ex-situ}$ transport of samples. The spectroscopic results determined on $\textit{n}$-SrTiO$_{3}$ single crystals and thin films clearly demonstrate the $\textit{p}$O$_{2}$-dependent activation of the strontium sublattice at intermediate temperatures that is accompanied by a shift of the Fermi level from the conduction band edge into the band gap. This shift illustrates an electron depletion layer being present at the $\textit{n}$-SrTiO$_{3}$ surface and thus the formation of a surface space charge layer. These findings are substantiated by electrical  characterization of the surface contact and the $\textit{in-plane}$ sheet properties in Pt/$\textit{n}$-SrTiO$_{3}$ heterostructures and $\textit{n}$-SrTiO$_{3}$ thin films, respectively. The surface contact of the heterojunction exhibit an increased transport barrier after annealing in oxidizing conditions while the thin films demonstrate a reduced carrier concentration directly after growth in oxidizing conditions and a $\textit{p}$O$_{2}$-dependent in-plane sheet resistance.
000872825 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000872825 8564_ $$uhttps://juser.fz-juelich.de/record/872825/files/Information_60.pdf$$yOpenAccess
000872825 909CO $$ooai:juser.fz-juelich.de:872825$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872825 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872825 9141_ $$y2019
000872825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161427$$aForschungszentrum Jülich$$b0$$kFZJ
000872825 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000872825 920__ $$lyes
000872825 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000872825 980__ $$aphd
000872825 980__ $$aVDB
000872825 980__ $$aUNRESTRICTED
000872825 980__ $$abook
000872825 980__ $$aI:(DE-Juel1)PGI-7-20110106
000872825 9801_ $$aFullTexts