000872835 001__ 872835
000872835 005__ 20240625095124.0
000872835 0247_ $$2doi$$a10.1021/acs.jctc.9b00424
000872835 0247_ $$2ISSN$$a1549-9618
000872835 0247_ $$2ISSN$$a1549-9626
000872835 0247_ $$2altmetric$$aaltmetric:67129244
000872835 0247_ $$2pmid$$apmid:31498615
000872835 0247_ $$2WOS$$aWOS:000489678700037
000872835 037__ $$aFZJ-2020-00305
000872835 082__ $$a610
000872835 1001_ $$0P:(DE-Juel1)168432$$aBolnykh, Viacheslav$$b0$$eCorresponding author
000872835 245__ $$aExtreme Scalability of DFT-Based QM/MM MD Simulations Using MiMiC
000872835 260__ $$aWashington, DC$$c2019
000872835 3367_ $$2DRIVER$$aarticle
000872835 3367_ $$2DataCite$$aOutput Types/Journal article
000872835 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582006022_32444
000872835 3367_ $$2BibTeX$$aARTICLE
000872835 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872835 3367_ $$00$$2EndNote$$aJournal Article
000872835 520__ $$aWe present a highly scalable DFT-based QM/MM implementation developed within MiMiC, a recently introduced multiscale modeling framework that uses a loose-coupling strategy in conjunction with a multiple-program multiple-data (MPMD) approach. The computation of electrostatic QM/MM interactions is parallelized exploiting both distributed- and shared-memory strategies. Here, we use the efficient CPMD and GROMACS programs as QM and MM engines, respectively. The scalability is demonstrated through large-scale benchmark simulations of realistic biomolecular systems employing non-hybrid and hybrid GGA exchange–correlation functionals. We show that the loose-coupling strategy adopted in MiMiC, with its inherent high flexibility, does not carry any significant computational overhead compared to a tight-coupling scheme. Furthermore, we demonstrate that the adopted parallelization strategy enables scaling up to 13,000 CPU cores with efficiency above 70%, thus making DFT-based QM/MM MD simulations using hybrid functionals at the nanosecond scale accessible.
000872835 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000872835 588__ $$aDataset connected to CrossRef
000872835 7001_ $$00000-0001-7487-944X$$aOlsen, Jógvan Magnus Haugaard$$b1$$eCorresponding author
000872835 7001_ $$00000-0002-3925-3799$$aMeloni, Simone$$b2
000872835 7001_ $$00000-0002-6905-3130$$aBircher, Martin P.$$b3
000872835 7001_ $$0P:(DE-Juel1)146009$$aIppoliti, Emiliano$$b4
000872835 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding author
000872835 7001_ $$00000-0002-1704-8591$$aRothlisberger, Ursula$$b6$$eCorresponding author
000872835 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.9b00424$$gVol. 15, no. 10, p. 5601 - 5613$$n10$$p5601 - 5613$$tJournal of chemical theory and computation$$v15$$x1549-9626$$y2019
000872835 8564_ $$uhttps://juser.fz-juelich.de/record/872835/files/acs.jctc.9b00424.pdf$$yRestricted
000872835 8564_ $$uhttps://juser.fz-juelich.de/record/872835/files/acs.jctc.9b00424.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872835 909CO $$ooai:juser.fz-juelich.de:872835$$pVDB
000872835 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168432$$aForschungszentrum Jülich$$b0$$kFZJ
000872835 9101_ $$0I:(DE-HGF)0$$60000-0001-7487-944X$$aExternal Institute$$b1$$kExtern
000872835 9101_ $$0I:(DE-HGF)0$$60000-0002-3925-3799$$aExternal Institute$$b2$$kExtern
000872835 9101_ $$0I:(DE-HGF)0$$60000-0002-6905-3130$$aExternal Institute$$b3$$kExtern
000872835 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146009$$aForschungszentrum Jülich$$b4$$kFZJ
000872835 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b5$$kFZJ
000872835 9101_ $$0I:(DE-HGF)0$$60000-0002-1704-8591$$aExternal Institute$$b6$$kExtern
000872835 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000872835 9141_ $$y2020
000872835 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2017
000872835 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872835 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872835 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872835 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872835 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872835 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872835 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872835 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872835 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2017
000872835 920__ $$lyes
000872835 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000872835 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000872835 980__ $$ajournal
000872835 980__ $$aVDB
000872835 980__ $$aI:(DE-Juel1)IAS-5-20120330
000872835 980__ $$aI:(DE-Juel1)INM-9-20140121
000872835 980__ $$aUNRESTRICTED