001     872836
005     20240625095125.0
024 7 _ |a 10.1021/acs.jcim.9b00157
|2 doi
024 7 _ |a 0095-2338
|2 ISSN
024 7 _ |a 1520-5142
|2 ISSN
024 7 _ |a 1549-9596
|2 ISSN
024 7 _ |a 1549-960X
|2 ISSN
024 7 _ |a altmetric:63618864
|2 altmetric
024 7 _ |a pmid:31033287
|2 pmid
024 7 _ |a WOS:000473116500039
|2 WOS
037 _ _ |a FZJ-2020-00306
082 _ _ |a 540
100 1 _ |a Ritacco, Ida
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Post-Translational Regulation of CYP450s Metabolism As Revealed by All-Atoms Simulations of the Aromatase Enzyme
260 _ _ |a Washington, DC
|c 2019
|b American Chemical Society64160
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602681655_11429
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphorylation by kinases enzymes is a widespread regulatory mechanism able of rapidly altering the function of target proteins. Among these are cytochrome P450s (CYP450), a superfamily of enzymes performing the oxidation of endogenous and exogenous substrates thanks to the electron supply of a redox partner. In spite of its pivotal role, the molecular mechanism by which phosphorylation modulates CYP450s metabolism remains elusive. Here by performing microsecond-long all-atom molecular dynamics simulations, we disclose how phosphorylation regulates estrogen biosynthesis, catalyzed by the Human Aromatase (HA) enzyme. Namely, we unprecedentedly propose that HA phosphorylation at Y361 markedly stabilizes its adduct with the flavin mononucleotide domain of CYP450s reductase (CPR), the redox partner of microsomal CYP450s, and a variety of other proteins. With CPR present at physiological conditions in a limiting ratio with respect to its multiple oxidative partners, the enhanced stability of the CPR/HA adduct may favor HA in the competition with the other proteins requiring CPR’s electron supply, ultimately facilitating the electron transfer and estrogen biosynthesis. As a result, our work elucidates at atomic-level the post-translational regulation of CYP450s catalysis. Given the potential for rational clinical management of diseases associated with steroid metabolism disorders, unraveling this mechanism is of utmost importance, and raises the intriguing perspective of exploiting this knowledge to devise novel therapies.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a Post-Transcriptional regulation mechanism of Human Aromatase investigated by molecular simulations (jias5a_20190501)
|0 G:(DE-Juel1)jias5a_20190501
|c jias5a_20190501
|f Post-Transcriptional regulation mechanism of Human Aromatase investigated by molecular simulations
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Spinello, Angelo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ippoliti, Emiliano
|0 P:(DE-Juel1)146009
|b 2
700 1 _ |a Magistrato, Alessandra
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.jcim.9b00157
|g Vol. 59, no. 6, p. 2930 - 2940
|0 PERI:(DE-600)1491237-5
|n 6
|p 2930 - 2940
|t Journal of chemical information and modeling
|v 59
|y 2019
|x 1549-960X
856 4 _ |u https://juser.fz-juelich.de/record/872836/files/Revised%20manuscript.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/872836/files/acs.jcim.9b00157.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/872836/files/Revised%20manuscript.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/872836/files/acs.jcim.9b00157.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:872836
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)146009
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM INF MODEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21