000872841 001__ 872841
000872841 005__ 20210130004314.0
000872841 0247_ $$2doi$$a10.1088/2515-7655/ab1577
000872841 0247_ $$2Handle$$a2128/23917
000872841 0247_ $$2altmetric$$aaltmetric:58430942
000872841 0247_ $$2WOS$$aWOS:000571496800001
000872841 037__ $$aFZJ-2020-00311
000872841 082__ $$a530
000872841 1001_ $$0P:(DE-Juel1)172856$$aWeber, Moritz L$$b0
000872841 245__ $$aEpitaxial catalysts for oxygen evolution reaction: model systems and beyond
000872841 260__ $$aBristol$$bIOP Publishing$$c2019
000872841 3367_ $$2DRIVER$$aarticle
000872841 3367_ $$2DataCite$$aOutput Types/Journal article
000872841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579270641_913
000872841 3367_ $$2BibTeX$$aARTICLE
000872841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872841 3367_ $$00$$2EndNote$$aJournal Article
000872841 520__ $$aEpitaxy of complex perovskite oxides has arrived at atomic scale precision. This opens new chances and opportunities to the field of electrolysis and water splitting, where perovskite oxides show promising catalytic activity for the oxygen evolution reaction (OER). While representing ideal model systems for improving our scientific understanding of atomistic processes and scaling relations during OER, epitaxial heterostructures furthermore give access to atomic band engineering strategies and allow the generation of hybrid materials, which may combine beneficial properties of neighboring materials on the nanoscale. These strategies render novel opportunities to enhance chemical stability and to tune overpotentials of OER-active perovskite materials, not accessible in the bulk. Epitaxial catalysts can therefore play an important role in achieving new breakthroughs and guide lines in the field.
000872841 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000872841 588__ $$aDataset connected to CrossRef
000872841 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b1$$eCorresponding author
000872841 773__ $$0PERI:(DE-600)2950951-8$$a10.1088/2515-7655/ab1577$$gVol. 1, no. 3, p. 031001 -$$n3$$p031001 -$$tJPhys energy$$v1$$x2515-7655$$y2019
000872841 8564_ $$uhttps://juser.fz-juelich.de/record/872841/files/Weber_2019_J._Phys._Energy_1_031001.pdf$$yOpenAccess
000872841 8564_ $$uhttps://juser.fz-juelich.de/record/872841/files/Weber_2019_J._Phys._Energy_1_031001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872841 909CO $$ooai:juser.fz-juelich.de:872841$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172856$$aForschungszentrum Jülich$$b0$$kFZJ
000872841 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b1$$kFZJ
000872841 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000872841 9141_ $$y2019
000872841 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872841 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872841 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000872841 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000872841 980__ $$ajournal
000872841 980__ $$aVDB
000872841 980__ $$aUNRESTRICTED
000872841 980__ $$aI:(DE-Juel1)PGI-7-20110106
000872841 980__ $$aI:(DE-82)080009_20140620
000872841 9801_ $$aFullTexts