001     872841
005     20210130004314.0
024 7 _ |a 10.1088/2515-7655/ab1577
|2 doi
024 7 _ |a 2128/23917
|2 Handle
024 7 _ |a altmetric:58430942
|2 altmetric
024 7 _ |a WOS:000571496800001
|2 WOS
037 _ _ |a FZJ-2020-00311
082 _ _ |a 530
100 1 _ |a Weber, Moritz L
|0 P:(DE-Juel1)172856
|b 0
245 _ _ |a Epitaxial catalysts for oxygen evolution reaction: model systems and beyond
260 _ _ |a Bristol
|c 2019
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579270641_913
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Epitaxy of complex perovskite oxides has arrived at atomic scale precision. This opens new chances and opportunities to the field of electrolysis and water splitting, where perovskite oxides show promising catalytic activity for the oxygen evolution reaction (OER). While representing ideal model systems for improving our scientific understanding of atomistic processes and scaling relations during OER, epitaxial heterostructures furthermore give access to atomic band engineering strategies and allow the generation of hybrid materials, which may combine beneficial properties of neighboring materials on the nanoscale. These strategies render novel opportunities to enhance chemical stability and to tune overpotentials of OER-active perovskite materials, not accessible in the bulk. Epitaxial catalysts can therefore play an important role in achieving new breakthroughs and guide lines in the field.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 1
|e Corresponding author
773 _ _ |a 10.1088/2515-7655/ab1577
|g Vol. 1, no. 3, p. 031001 -
|0 PERI:(DE-600)2950951-8
|n 3
|p 031001 -
|t JPhys energy
|v 1
|y 2019
|x 2515-7655
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/872841/files/Weber_2019_J._Phys._Energy_1_031001.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/872841/files/Weber_2019_J._Phys._Energy_1_031001.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872841
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130677
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21