000872850 001__ 872850
000872850 005__ 20240625095038.0
000872850 0247_ $$2doi$$a10.1103/PhysRevB.100.045116
000872850 0247_ $$2ISSN$$a0163-1829
000872850 0247_ $$2ISSN$$a0556-2805
000872850 0247_ $$2ISSN$$a1050-2947
000872850 0247_ $$2ISSN$$a1094-1622
000872850 0247_ $$2ISSN$$a1095-3795
000872850 0247_ $$2ISSN$$a1098-0121
000872850 0247_ $$2ISSN$$a1538-4489
000872850 0247_ $$2ISSN$$a1550-235X
000872850 0247_ $$2ISSN$$a2469-9950
000872850 0247_ $$2ISSN$$a2469-9969
000872850 0247_ $$2Handle$$a2128/23926
000872850 0247_ $$2altmetric$$aaltmetric:63743696
000872850 0247_ $$2WOS$$aWOS:000475499700003
000872850 037__ $$aFZJ-2020-00318
000872850 082__ $$a530
000872850 1001_ $$0P:(DE-Juel1)165898$$aMusshoff, Julian$$b0$$ufzj
000872850 245__ $$aLinear-response description of super-exchange driven orbital-ordering in K2CuF4
000872850 260__ $$aWoodbury, NY$$bInst.$$c2019
000872850 3367_ $$2DRIVER$$aarticle
000872850 3367_ $$2DataCite$$aOutput Types/Journal article
000872850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648130332_1005
000872850 3367_ $$2BibTeX$$aARTICLE
000872850 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872850 3367_ $$00$$2EndNote$$aJournal Article
000872850 520__ $$aWe study the nature of orbital and magnetic order in the layered perovskite K2CuF4, and compare to the case of the infinite-layer system KCuF3. To this end, we augment the local-density approximation + dynamical mean-field theory technique with linear-response functions. We explain orbital and magnetic order, and their evolution with increasing pressure. We show that both the tetragonal (ɛT) and the Jahn-Teller (ɛJT) crystal-field splitting play a key role. We find that surprisingly, unlike in KCuF3,ɛT is comparable to, or even larger than, ɛJT; in addition, ɛT is mostly determined by the layered structure itself and by the compression of the K cage, rather than by the deformations of the CuF6 octahedra. Next, we study the nature of orbital order. We calculate the superexchange transition temperature, finding TKK∼300K, a value close to the one for KCuF3. Thus, in K2CuF4 as in KCuF3,TKK is too small to explain the existence of orbital order up to the melting temperature. We show, however, that in the case of the layered perovskite, an additional superexchange mechanism is at work. It is an orbital Zeeman term, ˆhKK, and it is active also above TKK. We show that due to ˆhKK, phases with different types of ordering can coexist at temperatures below TKK. Similar effects are likely to play a role in other layered correlated systems.
000872850 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000872850 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000872850 536__ $$0G:(DE-Juel1)jiff46_20161101$$aSpin-orbital order-disorder transitions in strongly correlated systems (jiff46_20161101)$$cjiff46_20161101$$fSpin-orbital order-disorder transitions in strongly correlated systems$$x2
000872850 588__ $$aDataset connected to CrossRef
000872850 7001_ $$0P:(DE-Juel1)144464$$aZhang, Guoren$$b1
000872850 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b2$$ufzj
000872850 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b3$$eCorresponding author$$ufzj
000872850 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.045116$$gVol. 100, no. 4, p. 045116$$n4$$p045116$$tPhysical review / B$$v100$$x0163-1829$$y2019
000872850 8564_ $$uhttps://juser.fz-juelich.de/record/872850/files/PhysRevB.100.045116.pdf$$yOpenAccess
000872850 8564_ $$uhttps://juser.fz-juelich.de/record/872850/files/postprint.pdf$$yOpenAccess
000872850 8564_ $$uhttps://juser.fz-juelich.de/record/872850/files/PhysRevB.100.045116.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872850 8564_ $$uhttps://juser.fz-juelich.de/record/872850/files/postprint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872850 909CO $$ooai:juser.fz-juelich.de:872850$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165898$$aForschungszentrum Jülich$$b0$$kFZJ
000872850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich$$b2$$kFZJ
000872850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich$$b3$$kFZJ
000872850 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000872850 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000872850 9141_ $$y2019
000872850 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872850 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872850 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000872850 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000872850 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872850 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872850 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872850 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872850 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872850 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872850 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872850 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872850 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872850 920__ $$lyes
000872850 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000872850 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000872850 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000872850 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x3
000872850 9801_ $$aFullTexts
000872850 980__ $$ajournal
000872850 980__ $$aVDB
000872850 980__ $$aI:(DE-Juel1)IAS-3-20090406
000872850 980__ $$aI:(DE-Juel1)JSC-20090406
000872850 980__ $$aI:(DE-82)080012_20140620
000872850 980__ $$aI:(DE-Juel1)NIC-20090406
000872850 980__ $$aUNRESTRICTED
000872850 981__ $$aI:(DE-Juel1)PGI-2-20110106