000872861 001__ 872861
000872861 005__ 20220930130227.0
000872861 0247_ $$2doi$$a10.3389/fpls.2019.01684
000872861 0247_ $$2Handle$$a2128/24045
000872861 0247_ $$2pmid$$apmid:32038673
000872861 0247_ $$2WOS$$aWOS:000511191400001
000872861 0247_ $$2altmetric$$aaltmetric:74892233
000872861 037__ $$aFZJ-2020-00327
000872861 041__ $$aEnglish
000872861 082__ $$a570
000872861 1001_ $$0P:(DE-Juel1)141839$$aAlbrecht, Hendrik$$b0
000872861 245__ $$aQuantitative Estimation of Leaf Heat Transfer Coefficients by Active Thermography at Varying Boundary Layer Conditions
000872861 260__ $$aLausanne$$bFrontiers Media$$c2020
000872861 3367_ $$2DRIVER$$aarticle
000872861 3367_ $$2DataCite$$aOutput Types/Journal article
000872861 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580136329_31439
000872861 3367_ $$2BibTeX$$aARTICLE
000872861 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872861 3367_ $$00$$2EndNote$$aJournal Article
000872861 520__ $$aQuantifying heat and mass exchanges processes of plant leaves is crucial for detailed under-standing of dynamic plant-environment interactions. The two main components of these pro-cesses, convective heat transfer and transpiration, are inevitably coupled as both processes are restricted by the leaf boundary layer. To measure leaf heat capacity and leaf heat transfer co-efficient, we thoroughly tested and applied an active thermography method that uses a transi-ent heat pulse to compute τ, the time constant of leaf cooling after release of the pulse. We validated our approach in the laboratory on intact leaves of spring barley (Hordeum vulgare) and common bean (Phaseolus vulgaris), and measured τ-changes at different boundary layer conditions.By modelling the leaf heat transfer coefficient with dimensionless numbers, we could demon-strate that τ improves our ability to close the energy budget of plant leaves and that modelling of transpiration requires considerations of convection. Applying our approach to thermal im-ages we obtained spatio-temporal maps of τ, providing observations of local differences in thermal responsiveness of leaf surfaces.We propose that active thermography is an informative methodology to measure leaf heat transfer and derive spatial maps of thermal responsiveness of leaves contributing to improve models of leaf heat transfer processes.
000872861 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000872861 536__ $$0G:(DE-Juel1)BMBF-031A053A$$aDPPN - Deutsches Pflanzen Phänotypisierungsnetzwerk (BMBF-031A053A)$$cBMBF-031A053A$$fDeutsches Pflanzen Phänotypisierungsnetzwerk$$x1
000872861 588__ $$aDataset connected to CrossRef
000872861 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b1
000872861 7001_ $$0P:(DE-Juel1)129379$$aPieruschka, Roland$$b2
000872861 7001_ $$0P:(DE-Juel1)142555$$aMüller-Linow, Mark$$b3
000872861 7001_ $$0P:(DE-Juel1)169447$$aJedmowski, Christoph$$b4
000872861 7001_ $$0P:(DE-HGF)0$$aSchreiber, Lukas$$b5
000872861 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b6
000872861 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b7$$eCorresponding author
000872861 773__ $$0PERI:(DE-600)2613694-6$$a10.3389/fpls.2019.01684$$gVol. 10, p. 1684$$p1684$$tFrontiers in plant science$$v10$$x1664-462X$$y2020
000872861 8564_ $$uhttps://juser.fz-juelich.de/record/872861/files/fpls-10-01684.pdf$$yOpenAccess
000872861 8564_ $$uhttps://juser.fz-juelich.de/record/872861/files/fpls-10-01684.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872861 8767_ $$92020-01-20$$d2020-01-20$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1904.85
000872861 909CO $$ooai:juser.fz-juelich.de:872861$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000872861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich$$b1$$kFZJ
000872861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129379$$aForschungszentrum Jülich$$b2$$kFZJ
000872861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142555$$aForschungszentrum Jülich$$b3$$kFZJ
000872861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169447$$aForschungszentrum Jülich$$b4$$kFZJ
000872861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich$$b6$$kFZJ
000872861 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b7$$kFZJ
000872861 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000872861 9141_ $$y2020
000872861 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872861 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000872861 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872861 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PLANT SCI : 2017
000872861 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000872861 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000872861 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872861 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872861 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872861 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872861 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000872861 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000872861 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872861 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872861 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000872861 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872861 920__ $$lyes
000872861 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000872861 980__ $$ajournal
000872861 980__ $$aVDB
000872861 980__ $$aUNRESTRICTED
000872861 980__ $$aI:(DE-Juel1)IBG-2-20101118
000872861 980__ $$aAPC
000872861 9801_ $$aAPC
000872861 9801_ $$aFullTexts