000872864 001__ 872864
000872864 005__ 20220930130228.0
000872864 0247_ $$2doi$$a10.3389/fphys.2019.01617
000872864 0247_ $$2Handle$$a2128/24105
000872864 0247_ $$2altmetric$$aaltmetric:74892229
000872864 0247_ $$2pmid$$apmid:32063864
000872864 0247_ $$2WOS$$aWOS:000514299600001
000872864 037__ $$aFZJ-2020-00330
000872864 082__ $$a610
000872864 1001_ $$0P:(DE-Juel1)171331$$aHe, Xuan$$b0
000872864 245__ $$aImage-Derived Input Functions for Quantification of A1 Adenosine Receptors Availability in Mice Brains Using PET and [18F]CPFPX
000872864 260__ $$aLausanne$$bFrontiers Research Foundation$$c2020
000872864 3367_ $$2DRIVER$$aarticle
000872864 3367_ $$2DataCite$$aOutput Types/Journal article
000872864 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580388991_17363
000872864 3367_ $$2BibTeX$$aARTICLE
000872864 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872864 3367_ $$00$$2EndNote$$aJournal Article
000872864 520__ $$aIn vivo imaging for the A1 adenosine receptors (A1ARs) with positron emission tomography (PET) using 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX) has become an important tool for studying physiologic processes quantitatively in mice. However, the measurement of arterial input functions (AIFs) on mice is a method with restricted applicability because of the small total blood volume and the related difficulties in withdrawing blood. Therefore, the aim of this study was to extract an appropriate [18F]CPFPX image-derived input function (IDIF) from dynamic PET images of mice.In this study five mice were scanned with [18F]CPFPX for 60 min. Arterial blood samples (n=7 per animal) were collected from the femoral artery and corrected for metabolites. To generate IDIFs, three different approaches were selected: (A) volume of interest (VOI) placed over the heart (cube, 10mm); (B) VOI set over abdominal vena cava/aorta region with a cuboid (5 × 5 × 15mm); and (C) with 1 × 1 × 1mm voxels on 5 consecutive slices. A calculated scaling factor (α) was used to correct for partial volume effect, the method of obtaining the total metabolite correction of [18F]CPFPX for IDIFs was developed. Three IDIFs were validated by comparison with AIF. Validation included: visual performance; computing area under the curve (AUC) ratios (IDIF / AIF) of whole-blood curves and parent curves; in addition, the mean distribution volume (VT) ratios (IDIF / AIF) of A1ARs calculated by Logan plot and two-tissue compartment model (2TCM).Compared with the AIF, the IDIF with VOI over heart showed the best performance among the three IDIFs after scaling by 1.77 (α) in terms of visual analysis, AUC ratios (IDIF / AIF, whole-blood AUC ratio 1.03 ± 0.06, parent curve AUC ratio 1.01 ± 0.10) and VT ratios (IDIF / AIF; Logan VT ratio 1.00 ± 0.17, 2TCM VT ratio 1.00 ± 0.13) evaluation. The A1ARs distribution of average parametric images was in good accordance to autoradiography of the same mice brains.The proposed study provides evidence that IDIF with VOI over heart can replace AIF effectively for quantification of A1ARs by using PET and [18F]CPFPX in mice brains.
000872864 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000872864 588__ $$aDataset connected to CrossRef
000872864 7001_ $$0P:(DE-Juel1)131711$$aWedekind, Franziska$$b1
000872864 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b2
000872864 7001_ $$0P:(DE-Juel1)131712$$aOskamp, Angela$$b3
000872864 7001_ $$0P:(DE-Juel1)133864$$aBeer, Simone$$b4
000872864 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b5
000872864 7001_ $$0P:(DE-Juel1)131818$$aErmert, Johannes$$b6$$ufzj
000872864 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b7
000872864 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b8
000872864 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b9$$eCorresponding author
000872864 773__ $$0PERI:(DE-600)2564217-0$$a10.3389/fphys.2019.01617$$gVol. 10, p. 1617$$p1617$$tFrontiers in physiology$$v10$$x1664-042X$$y2020
000872864 8564_ $$uhttps://juser.fz-juelich.de/record/872864/files/fphys-10-01617.pdf$$yOpenAccess
000872864 8564_ $$uhttps://juser.fz-juelich.de/record/872864/files/fphys-10-01617.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872864 8767_ $$82019-0221085-2$$92020-01-20$$d2020-01-20$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 2507,50
000872864 909CO $$ooai:juser.fz-juelich.de:872864$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000872864 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872864 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000872864 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000872864 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYSIOL : 2017
000872864 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000872864 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000872864 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872864 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872864 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872864 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872864 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000872864 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872864 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872864 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000872864 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872864 9141_ $$y2020
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171331$$aForschungszentrum Jülich$$b0$$kFZJ
000872864 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)171331$$a2Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, Aachen, Germany$$b0
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131711$$aForschungszentrum Jülich$$b1$$kFZJ
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich$$b2$$kFZJ
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131712$$aForschungszentrum Jülich$$b3$$kFZJ
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133864$$aForschungszentrum Jülich$$b4$$kFZJ
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b5$$kFZJ
000872864 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177611$$aDepartment of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany$$b5
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131818$$aForschungszentrum Jülich$$b6$$kFZJ
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b7$$kFZJ
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b8$$kFZJ
000872864 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131672$$aNeurological Department, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany$$b8
000872864 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich$$b9$$kFZJ
000872864 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131679$$aDivision of Medical Psychology, University of Bonn, Bonn, Germany$$b9
000872864 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000872864 920__ $$lyes
000872864 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000872864 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
000872864 980__ $$ajournal
000872864 980__ $$aVDB
000872864 980__ $$aUNRESTRICTED
000872864 980__ $$aI:(DE-Juel1)INM-2-20090406
000872864 980__ $$aI:(DE-Juel1)INM-5-20090406
000872864 980__ $$aAPC
000872864 9801_ $$aAPC
000872864 9801_ $$aFullTexts