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Abstract

Wannier90 is an open-source computer program for calculating maximally-localised Wannier 

functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-

structure codes thanks to its independence from the basis sets representing these Bloch states. 

In the past few years the development of Wannier90 has transitioned to a community-driven 

model; this has resulted in a number of new developments that have been recently released 

in Wannier90 v3.0. In this article we describe these new functionalities, that include the 

implementation of new features for wannierisation and disentanglement (symmetry-adapted 

Wannier functions, selectively-localised Wannier functions, selected columns of the density 

matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, 

and a new interface to many-body perturbation theory); performance improvements, including 

parallelisation of the core code; enhancements in functionality (support for spinor-valued 

Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); 

improved usability (improved plotting routines, integration with high-throughput automation 

frameworks), as well as the implementation of modern software engineering practices (unit 

testing, continuous integration, and automatic source-code documentation). These new 

features, capabilities, and code development model aim to further sustain and expand the 

community uptake and range of applicability, that nowadays spans complex and accurate 

dielectric, electronic, magnetic, optical, topological and transport properties of materials.

Keywords: Wannier functions, band structure interpolation, local orbitals, real-space methods, 

electronic structure, Wannier orbitals, density-functional theory

(Some �gures may appear in colour only in the online journal)

1. Introduction

Wannier90 is an open-source code for generating Wannier 

functions (WFs), in particular maximally-localised Wannier 

functions (MLWFs), and using them to compute advanced 

materials properties with high ef�ciency and accuracy. 

Wannier90 is a paradigmatic example of interoperable soft-

ware, achieved by ensuring that all the quantities required as 

input are entirely independent of the underlying electronic-

structure code from which they are obtained. Most of the 

major and widely used electronic-structure codes have an 

interface to Wannier90, including Quantum ESPRESSO 

[1], ABINIT [2], VASP [3–5], Siesta [6], Wien2k [7], Fleur 

[8], Octopus [9] and ELK [10]. As a consequence, once a 

property is implemented within Wannier90, it can be imme-

diately available to users of all codes that interface to it.

Over the last few years, Wannier90 has undergone a trans-

ition from a code developed by a small group of developers 

to a community code with a much wider developer base. This 

has been achieved in two principal ways: (i) hosting the source 

code and associated development efforts on a public GitHub 

repository [11]; and (ii) building a community of Wannier90 

developers and facilitating personal interactions between indi-

viduals through community workshops, the most recent in 

2016. In response, the code has grown signi�cantly, gaining 

many novel features contributed by this community, as well 

as numerous �xes.

In this paper, we describe the most important novel contrib-

utions to the Wannier90 code, as embodied in its 3.0 release. 

The paper is structured as follows: in section 2 we �rst sum-

marise the background theory for the computation of MLWFs 

(additional details can be found in [12]), and introduce the 
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notation that will be used throughout the paper. In section 3 

we describe the novel features of Wannier90 that are related 

to the core wannierisation and disentanglement algorithms; 

these include symmetry-adapted WFs, selective localisation of 

WFs, and parallelisation using the message-passing interface 

(MPI). In section 4 we describe new functionality enhance-

ments, including the ability to handle spinor-valued WFs and 

calculations with non-collinear spin that use ultrasoft pseudo-

potentials (within Quantum ESPRESSO); improved interpo-

lation of the k-space Hamiltonian; a more �exible approach 

for handling and using initial projections; and the ability to 

plot WFs in Gaussian cube format on WF-centred grids with 

non-orthogonal translation vectors. In section 5 we describe 

new functionalities associated with using MLWFs for com-

puting advanced electronic-structure properties, including 

the calculation of shift currents, gyrotropic effects and spin 

Hall conductivities, as well as parallelisation improvements 

and the interpolation of bands originating from calculations 

performed with many-body perturbation theory (GW). In 

section  6 we describe the selected-columns-of-the-density-

matrix (SCDM) method, which enables computation of WFs 

without the need for explicitly de�ning initial projections. In 

section 7 we describe new post-processing tools and codes, 

and the integration of Wannier90 with high-throughput auto-

mation and work�ow management tools (speci�cally, the 

AiiDA materials’ informatics infrastructure [13]). In section 8 

we describe the modern software engineering practices now 

adopted in Wannier90, that have made it possible to improve 

the development lifecycle and transform Wannier90 into a 

community-driven code. Finally, our conclusions and outlook 

are presented in section 9.

2. Background

WFs form a possible basis set for the electronic states of mate-

rials. As we are going to describe in the following, WFs are not 

unique and they can be optimised to obtain MLWFs. These are 

par ticularly useful in a number of electronic-structure appli-

cations. For instance, they enable ef�cient interpolation of 

operator matrix elements on dense grids in the Brillouin Zone 

(BZ), which is a key step to compute many materials proper-

ties. The interpolation is obtained starting from the value of 

these matrix elements and other properties of the wavefunc-

tions (described below) computed on a coarser grid, usually 

with an accurate but slower ab initio code. MLWFs play in 

materials a role analogous to molecular orbitals in molecules 

and some typical MLWFs, e.g., in the case of those corre-

sponding to the valence bands of GaAs, are discussed in sec-

tion 3.3.

Formally, MLWFs can be introduced as follows in the 

independent-particle approximation. The electronic structure 

of a periodic system is conventionally represented in terms of 

one-electron Bloch states ψnk(r), which are labelled by a band 

index n and a crystal momentum k inside the �rst BZ, and 

which satisfy Bloch’s theorem:

ψnk(r) = unk(r)e
ik·r, (1)

where unk(r) = unk(r + R) is a periodic function with the 

same periodicity of the single-particle Hamiltonian, and R  is 

a Bravais lattice vector. For the moment we ignore the spin 

degrees of freedom and work with spinless wave functions; 

spinor wave functions will be treated in section 4.1. Such a 

formalism is also commonly applied, via the supercell approx-

imation, to non-periodic systems, typically used to treat point, 

line and planar defects in crystals, surfaces, amorphous solids, 

liquids and molecules.

2.1. Isolated bands

A group of bands is said to be isolated if it is separated 

by energy gaps from all the other lower and higher bands 

throughout the BZ (this isolated group of bands may still show 

arbitrary crossing degeneracies and hybridisations within 

itself). For a set of J such bands, the electronic states can be 

equivalently represented by a set of J WFs per cell, that are 

related to the Bloch states via two unitary transformations 

(one continuous, one discrete) [14]:

|wnR〉 = V

∫

BZ

dk

(2π)3
e−ik·R

J∑

m=1

|ψmk〉Umnk, (2)

where wnR(r) = wn0(r − R) is a periodic (but not necessarily 

localised) WF labelled by the quantum number R  (the con-

jugate variable of the quasi-momentum k in the Bloch repre-

sentation), V  is the cell volume and Uk  are unitary matrices 

that mix Bloch states at a given k and represent the gauge 

freedom that exists in the de�nition of the Bloch states and 

that is inherited by the WFs.

MLWFs are obtained by choosing Uk  matrices that mini-

mise the sum of the quadratic spreads of the WFs about their 

centres for a reference R  (say, R = 0). This sum is given by 

the spread functional

Ω =

J
∑

n=1

[

〈wn0|r · r|wn0〉 − |〈wn0|r|wn0〉|
2
]

. (3)

Ω may be decomposed into two positive-de�nite parts [15],

Ω = ΩI + Ω̃, (4)

where

ΩI =
∑

n

[
〈wn0|r · r|wn0〉 −

∑

mR

|〈wmR|r|wn0〉|
2

]
 (5)

is gauge invariant (i.e. invariant under the action of any uni-

tary Uk  on the Bloch states), and

Ω̃ =
∑

n

∑

mR �=n0

|〈wmR|r|wn0〉|
2

 (6)

is gauge dependent. Therefore, the “wannierisation” of an iso-

lated manifold of bands, i.e. the transformation of Bloch states 

into MLWFs, amounts to minimising the gauge-dependent 

part Ω̃ of the spread functional.

Crucially, the matrix elements of the position oper-

ator between WFs can be expressed in reciprocal space. 

Under the assumption that the BZ is sampled on a uniform 
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Monkhorst–Pack mesh of k-points composed of N points 

(V
∫

BZ
dk

(2π)3 →
1
N

∑
k), the gauge-independent and gauge-

dependent parts of the spread may be expressed, respectively, 

as [15]

ΩI =
1

N

∑

k,b

wb

[
J −

∑

mn

∣∣∣M(k,b)
mn

∣∣∣
2

]

 (7)

and

Ω̃ =
1

N

∑

k,b

wb

∑

m �=n

∣∣∣M(k,b)
mn

∣∣∣
2

+
1

N

∑

k,b

wb

∑

n

(− Im lnM(k,b)
nn − b · r̄n)

2,

 (8)

where b are the vectors connecting a k-point to its neighbours, 

wb are weights associated with the �nite-difference repre-

sentation of ∇k  for a given geometry, the matrix of overlaps 

M(k,b) is de�ned by
M(k,b)

mn = 〈umk|un,k+b〉, (9)

and the centres of the WFs are given by

r̄n ≡ 〈wn0|r|wn0〉 = −
1

N

∑

k,b

wbb Im lnM(k,b)
nn . (10)

Minimisation of the spread functional is achieved by considering 

in�nitesimal gauge transformations Umnk = δmn + dWmnk, 

where dW  is anti-Hermitian (dW† = −dW ). The gradient of 

the spread functional with respect to such variations is given 

by

Gk ≡
dΩ

dWmnk

= 4
∑

b

wb

(

A[R(k,b)
mn ]− S[T(k,b)

mn ]
)

, (11)

where A and S  are the super-operators A[B] = (B − B†)/2 

and S[B] = (B + B†)/2i, respectively, and

R(k,b)
mn = M(k,b)

mn M(k,b)∗
nn , (12)

T(k,b)
mn =

M
(k,b)
mn

M
(k,b)
nn

q(k,b)
n , (13)

q(k,b)
n = Im lnM(k,b)

nn + b · r̄n. (14)

For the full derivation of equation (11) we refer to [15]. This 

gradient is then used to generate a search direction Dk for an 

iterative steepest-descent or conjugate-gradient minimisation 

of the spread [16]: at each iteration the unitary matrices are 

updated according to

Uk → Uk exp[αDk], (15)

where α is a coef�cient that can either be set to a �xed value 

or determined at each iteration via a simple polynomial line-

search, and the matrix exponential is computed in the diagonal 

representation of Dk and then transformed back in the original 

representation. Once the unitary matrices have been updated, 

the updated set of M(k,b) matrices is calculated according to

M(k,b) = U
†
kM(0)(k,b)Uk+b, (16)

where

M(0)(k,b)
mn = 〈u

(0)
mk |u

(0)
n,k+b〉 (17)

is the set of initial M(k,b) matrices, computed once and for all, 

at the start of the calculation, from the original set of reference 

Bloch orbitals |u
(0)
nk 〉.

2.2. Entangled bands

It is often the case that the bands of interest are not separated 

from other bands in the Brillouin zone by energy gaps and 

overlap and hybridise with other bands that extend beyond the 

energy range of interest. In such cases, we refer to the bands 

as being entangled.

The dif�culty in constructing MLWFs for entangled bands 

arises from the fact that, within a given energy window, the 

number of bands Jk at each k-point k in the BZ is not a con-

stant and is, in general, different from the target number J of 

WFs: Jk � J . Even making the energy window k-dependent 

would see discontinuous inclusion and exclusion of bands as 

the BZ is traversed. The treatment of entangled bands requires 

thus a more complex approach that is typically a two-step pro-

cess. In the �rst step, a J-dimensional manifold of Bloch states 

is selected at each k-point, chosen to be as smooth as possible 

as a function of k. In the second step, the gauge freedom asso-

ciated with the selected manifold is used to obtain MLWFs, 

just as described in section 2.1 for the case of an isolated set 

of bands.

Focusing on the �rst step, an orthonormal basis for the 

J-dimensional subspace Sk at each k can be obtained by per-

forming a semi-unitary transformation on the Jk states at k,

|ψ̃nk〉 =

Jk∑

m=1

|ψmk〉Vmnk, (18)

where Vk is a rectangular matrix of dimension Jk × J  that is 

semi-unitary in the sense that V
†
kVk = 1.

To select the smoothest possible manifold, a measure of 

the intrinsic smoothness of the chosen subspace is needed. It 

turns out that such a measure is given precisely by the gauge-

invariant part ΩI of the spread functional for isolated bands 

[17]. Indeed, equation (7) can be expressed as

ΩI =
1

N

∑

k,b

wbTr[PkQk+b], (19)

where Pk =
∑J

n=1 |ũnk〉〈ũnk| is the projection operator onto 

Sk, Qk = 1 − Pk is its Hilbert-space complement, and ‘Tr’ 

represents the trace over the entire Hilbert space. Tr[PkQk+b] 
measures the mismatch between the subspaces Sk and Sk+b, 

vanishing if they overlap identically. Hence ΩI measures the 

average mismatch of the local subspace Sk across the BZ, so 

that an optimally-smooth subspace can be selected by mini-

mising ΩI. Doing this with orthonormality constraints on the 

Bloch-like states is equivalent to solving self-consistently the 

set of coupled eigenvalue equations [17]
[
∑

b

wbPk+b

]
|ũnk〉 = λnk|ũnk〉. (20)
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The solution can be achieved via an iterative procedure, 

whereby at the ith iteration the algorithm traverses the entire 

set of k-points, selecting at each one the J-dimensional sub-

space S
(i)
k  that has the smallest mismatch with the subspaces 

S
(i−1)
k+b  at the neighbouring k-points obtained in the previous 

iteration. This amounts to solving
[
∑

b

wbP
(i−1)
k+b

]
|ũ

(i)
nk 〉 = λ

(i)
nk |ũ

(i)
nk 〉, (21)

and selecting the J eigenvectors with the largest eigenvalues 

[17]. Self-consistency is reached when S
(i)
k = S

(i−1)
k  (to 

within a user-de�ned threshold) at all the k-points. To make 

the algorithm more robust, the projector appearing on the left-

hand-side of equation (21) is replaced with [P
(i)
k+b]in, given by

[P
(i)
k+b]in = βP

(i−1)
k+b + (1 − β)[P

(i−1)
k+b ]in, (22)

which is a linear mixture of the projector that was used as 

input for the previous iteration and the projector de�ned by 

the output of the previous iteration. The parameter 0 < β � 1 

determines the degree of mixing, and is typically set to 

β = 0.5; setting β = 1 reverts precisely to equation  (21), 

while smaller and smaller values of β make convergence 

smoother (and thus more robust) but also slower.

In practice, equation  (21) is solved by diagonalising the 

Hermitian operator appearing on the left-hand-side in the 

basis of the original Jk Bloch states:

Z
(i)
mnk = 〈u

(0)
mk |

∑

b

wb[P
(i)
k+b]in|u

(0)
nk 〉. (23)

Once the optimal subspace has been selected, the wan-

nierisation procedure described in section 2.1 is carried out to 

minimise the gauge-dependent part Ω̃ of the spread functional 

within that optimal subspace.

2.3. Initial projections

In principle, the overlap matrix elements M
(k,b)
mn  are the only 

quantities required to compute and minimise the spread func-

tional, and generate MLWFs for either isolated or entangled 

bands. In practice, this is generally true when dealing with 

an isolated set of bands, but in the case of entangled bands 

a good initial guess for the subspaces Sk alleviates prob-

lems associated with falling into local minima of ΩI, and/

or obtaining MLWFs that cannot be chosen to be real-valued 

(when no spin-orbit coupling is included). Even in the case 

of an isolated set of bands, a good initial guess for the WFs, 

whilst not usually critical, often results in faster convergence 

of the spread to the global minimum. (It is important to note 

that both for isolated and for entangled bands multiple solu-

tions to the wannierisation or disentanglement can exist, as 

discussed later.)

A simple and effective procedure for selecting an initial 

gauge (in the case of isolated bands) or an initial subspace 

and initial gauge (in the case of entangled bands) is to project 

a set of J trial orbitals gn(r) localised in real space onto the 

space spanned by the set of original Bloch states at each k:

|φnk〉 =

J or Jk
∑

m=1

|ψmk〉〈ψmk|gn〉, (24)

where the sum runs up to either J or Jk, depending on whether 

the bands are isolated or entangled, respectively, and the inner 

product Amnk = 〈ψmk|gn〉 is over the Born–von Karman super-

cell. (In practice, the fact that the gn are localised greatly sim-

pli�es this calculation.) The matrices Ak are square (J × J) 
or rectangular (Jk × J) in the case of isolated or entangled 

bands, respectively. The resulting orbitals are then orthonor-

malised via a Löwdin transformation [18]:

|ψ̃nk〉 =

J∑

m=1

|φmk〉S
−

1
2

mnk (25)

=

J or Jk
∑

m=1

|ψmk〉(AkS
− 1

2

k )mn, (26)

where Smnk = 〈φmk|φnk〉 = (A†
kAk)mn, and AkS

−
1
2

k  is a unitary 

matrix in the case of isolated bands and semi-unitary in the 

case of entangled bands. In the case of entangled bands, once 

an optimally-smooth subspace has been obtained as described 

in section 2.2, the same trial orbitals gn(r) can be used to ini-

tialise the wannierisation procedure of section  2.1. In prac-

tice, the matrices Ak are computed once and for all at the start 

of the calculation, together with the overlap matrices M(k,b). 

These two operations need to be performed within the context 

of the electronic-structure code and basis set adopted; after-

wards, all the operations of Wannier90 rely only on Ak and 

M(k,b) and not on the speci�c representation of ψmk (e.g. plane 

waves, linearised augmented plane waves, localised basis sets, 

real-space grids, ...).

3. New features for wannierisation and 

disentanglement

In this section  we provide an overview of the new features 

associated with the core wannierisation and disentanglement 

algorithms in Wannier90, namely the ability to generate WFs 

of speci�c symmetry; selectively localise a subset of the WFs 

and/or constrain their centres to speci�c sites; and perform 

wannierisation and disentanglement more ef�ciently through 

parallelisation.

3.1. Symmetry-adapted Wannier functions

In periodic systems, atoms are usually found at sites q whose 

site-symmetry group Gq is a subgroup of the full point group 

F of the crystal [19] (the symmetry operations in the group 

Gq are those that leave q �xed). The set of points {qa} that 

are symmetry-equivalent sites to q is called an orbit [20]. 

These are all the points in the unit cell that can be generated 

from q by applying the symmetry operations in the full space 

group G that do not leave q �xed. If qa is a high-symmetry 

site then its Wyckoff position has a single orbit [20]; for 

low-symmetry sites different orbits correspond to the same 

J. Phys.: Condens. Matter 32 (2020) 165902
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Wyckoff position. The number of points in the orbit(s) is the 

multiplicity nqa
 of the Wyckoff position. MLWFs, however, 

are not bound to reside on such high-symmetry sites, and they 

do not necessarily possess the site symmetries of the crystal 

[17, 21, 22]. When using MLWFs as a local orbital basis set in 

methods such as �rst-principles tight binding, DFT  +  U and 

DFT plus dynamical-mean-�eld theory (DMFT), which deal 

with beyond-DFT correlations in a local subspace such as that 

spanned by d orbitals (e.g. for systems containing transition 

metals atoms) or f  orbitals (e.g. for systems containing rare-

earth or actinide series atoms), it is often desirable to ensure 

that the WFs basis possesses the local site symmetries.

Sakuma [21] has shown that such symmetry-adapted 

Wannier functions (SAWFs) can be constructed by intro-

ducing additional constraints on the unitary matrices Uk  of 

equation (2) during the minimisation of the spread. SAWFs, 

therefore, can be fully integrated within the original maximal-

localisation procedure. The SAWF approach gives the user a 

certain degree of control over the symmetry and centres of the 

Wannier functions at the expense of some localisation since 

the �nal total spread of the resulting SAWFs can only be equal 

to, or most often larger than, that of the corresponding MLWFs 

with no constraints (note that in principle some SAWFs can 

have a smaller individual spread than any MLWFs).

For a given point qa in the home unit cell R = 0, the 

SAWFs centred at that point are denoted by

{w
(̺)
ia (r) ≡ w

(̺)
i (r − qa), i = 1, . . . , n̺}, (27)

where ̺  is the character of the irreducible representation 

(irrep) of the corresponding site-symmetry group Ga with 

dimension n̺. For instance, in a simple fcc crystal such as 

copper (Cu), the site-symmetry group associated with the Cu 

site is Oh; one of its irreps [20] is e.g. 3-dimensional T2g and, 

assuming the Cu atom is located at the origin r = 0 of the unit 

cell, three associated SAWFs are denoted w
T2g

10 (r), w
T2g

20 (r) and 

w
T2g

30 (r).
To �nd these SAWFs, one needs to specify appropriate uni-

tary transformations U
(̺)
miak of the Bloch states, de�ned by

w
(̺)
ia (r − R) =

1

N

∑

k

e−ik·R

J
∑

m=1

ψmk(r)U
(̺)
miak

=
1

N

∑

k

e−ik·Rψ
(̺)
iak (r),

 

(28)

where {ψ
(̺)
iak (r)} are basis functions of the irrep ̺  and are 

formed from linear combinations of the J eigenstates {ψnk(r)} 

of the Hamiltonian H. Since H is invariant under the full space 

group G, the representation of a given symmetry operation 

g = (R|t) ∈ G (where R and t are the rotation and fractional-

translation parts of the symmetry operation, respectively) in 

the basis {ψnk(r)} must be a J × J unitary matrix [19] d̃k(g), 

i.e. d̃k(g) represents how the J Bloch states are transformed 

by the symmetry operation g:

gψnk(r) =

J
∑

m=1

ψmRk(r)d̃mnk(g), g ∈ G, (29)

where the matrix elements d̃k(g) are given by

d̃mnk(g) =

∫

drψ∗

mRk(r)ψnk

(

g−1r
)

. (30)

On the other hand, the Bloch functions {ψ
(̺)
iak (r)}, de�ned in 

equation (28), transform under the action of g ∈ G as

gψ
(̺)
iak (r) =

∑

i′a′̺′

ψ
(̺′)
i′a′Rk(r)D

(̺′,̺)
i′a′,iak(g), (31)

where Dk(g) is the matrix representation of the symmetry 

operation g in the basis of {ψ
(̺)
iak (r)}; the reader is referred to 

[19, 21] for details.

From equations  (28), (29) and (31), it can be shown 

[21] that, for a symmetry operation gk that leaves a given k 

unchanged, the following relationship holds:

UkDk(gk) = d̃k(gk)Uk, gk ∈ Gk (32)

and, to obtain SAWFs, the initial unitary matrix Uk  (k ∈ IBZ) 

must satisfy this constraint. This can be achieved iteratively, 

starting with the initial projection onto localised orbitals as 

described in section 2.3, and with knowledge of d̃k(g) (equa-

tion (29)) and Dk(g) (equation (31)), as discussed in detail 

in [21]. The matrices d̃k(g), which are independent of the 

underlying basis-set used to represent the Bloch states and are 

computed only once at the start of the calculation, can be cal-

culated directly from the Bloch states via equation (30). The 

matrices Dk(g) are calculated by specifying the centre qa and 

the desired symmetry of the Wannier functions (e.g. s, p , d 

etc) and, for each symmetry operation ga in the site-symmetry 

group Ga, calculating the matrix representation of the rota-

tional part.

For an isolated set of bands, the minimisation of Ω̃ with 

the constraints de�ned in equation (32) requires the gradient 

G
sym
k  of the total spread Ω with respect to a symmetry-adapted 

gauge variation, which is then used to generate a search direc-

tion D
sym
k . The symmetry-adapted gradient is given by

G
sym
k =

1

nk

∑

g=(R|t)∈G

Dk(g)GRkD
†
k(g), (33)

where Gk is the original gradient given in equation (11), and 

nk is the number of symmetry operations in G that leave k 

�xed. It is worth noting that there is no guarantee that equa-

tion (32) can be satis�ed for any irrep, for example, when one 

is considering a target energy window with a limited number 

of Bloch states whose symmetry might not be compatible with 

the irrep.

In the case of entangled bands, a similar two-step approach 

is taken as in the case of MLWFs (section 2.2): �rst ΩI is mini-

mised by selecting an optimal subspace of Bloch states that 

are required to transform according to equation (31), followed 

by minimisation of Ω̃ with respect to gauge variations that 

respect the site symmetries within this subspace, as described 

for the case of isolated bands above, but with the difference 

that the constraint of equation (32) is modi�ed to

UkDk(gk) = Dk(gk)Uk, gk ∈ Gk, (34)
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since the states of the optimal subspace transform according 

to equation (31), rather than equation (29).

An implementation of the SAWF algorithm for both iso-

lated and entangled bands can be found in pw2wannier90, 

the interface code between Quantum ESPRESSO and 

Wannier90. A typical calculation consists of the following 

steps: (a) de�ne the symmetry operations of the site-symmetry 

group. These are either calculated by pw2wannier90.x, if the 

site-symmetry group is equivalent to the full space group of 

the crystal, or they can be provided in the .sym �le (e.g. if 

the site-symmetry group contains fewer symmetry operations 

than the full space group). (b) Specify the site location and 

orbital symmetry of the SAWFs. These are de�ned in the pro-

jection block of the Wannier90 input �le .win �le. (c) Run 

a preprocessing Wannier90 calculation to write this informa-

tion into an intermediate �le (with extension .nnkp) which 

is then read by pw2wannier90.x. (d) Run pw2wannier90.x 

to calculate the D matrix in equation (31). pw2wannier90.x 

computes also the d̃ matrix in equation (30) from the Kohn–

Sham states of the DFT calculation. (e) These matrices are 

then written to a .dmn �le which is read by Wannier90 at the 

start of the optimisation.

3.2. Selectively-localised Wannier functions and constrained 

Wannier centres

Wang et al have proposed an alternative method [23] to the 

symmetry-adapted Wannier functions described in section 3.1. 

Their method permits the selective localisation of a subset of 

the Wannier functions, which may optionally be constrained 

to have speci�ed centres. Whilst this method does not enforce 

or guarantee symmetry constraints, it has been observed in 

the cases that have been studied [23] that Wannier functions 

whose centres are constrained to a speci�c site typically pos-

sess the corresponding site symmetries.

For an isolated set of J bands, selective localisation of a 

subset of J′ � J Wannier functions is accomplished by mini-

mising the total spread Ω with respect to only J′ × J′ degrees 

of freedom in the unitary matrix Uk . The spread functional to 

minimise is then given by

Ω′ =

J′�J
∑

n=1

[

〈wn0|r
2|wn0〉 − |〈wn0|r|wn0〉|

2
]

, (35)

which reduces to the original spread functional Ω of equa-

tion (3) for J′ = J. When J′ < J, it is no longer possible to 

cast the functional Ω′ as a sum of a gauge-independent term 

ΩI and gauge-dependent one Ω̃, as done in equation (4) for Ω. 

Nevertheless, the minimisation can be carried out with methods 

very similar to those described in section 2. In fact, for J′ < J, 

Ω′ can be written as the sum of two gauge-dependent terms, 

Ω′ = ΩIOD +ΩD, where ΩIOD is formally given by the sum of 

ΩI and the off-diagonal term (m �= n), m, n � J′ < J of Ω̃, 

and ΩD by the diagonal term (m = n) of Ω̃. If one adopts the 

usual discrete representation on a uniform Monkhorst–Pack 

grid of k-points, ΩIOD and ΩD are given by [23]

ΩIOD =
1

N

∑

k,b

wb



J′ −

J′<J
∑

n

∣

∣

∣
M(k,b)

nn

∣

∣

∣

2



 (36)

and

ΩD =
1

N

J′<J
∑

n=1

∑

b,k

wb

(

Im lnM(k,b)
nn + b · r̄n

)2

. (37)

With this new spread functional, we can mimic the procedure 

used to obtain a set of MLWFs, and derive the gradient G′

k of 

Ω′ which gives the search direction to be used in the minimi-

sation. The matrix elements of G′

k read

G′

mnk =























Gmnk m � J′, n � J′,

− 2
∑

b wb

[

R
(k,b)∗
nm − iT

(k,b)∗
nm

]

m � J′, J′ < n � J,

2
∑

b wb

[

R
(k,b)
mn + iT

(k,b)
mn

]

J′ < m � J, n � J′,

0 J′ < m � J, J′ < n � J,
 (38)

where Gmnk are the matrix elements of the original gradient in 

equation (11) (see also [15]), and R
(k,b)
mn  and T

(k,b)
mn  are given by 

equations (12) and (13), respectively. As a result of the mini-

misation, we obtain a set of J′  maximally-localised Wannier 

functions, known as selectively-localised Wannier functions 

(SLWFs), whose spreads are in general smaller than the corre-

sponding MLWFs. Naturally, the remaining J − J′ functions 

will be more delocalised than their MLWF  counterparts, as 

they are not optimised, and the overall sum of spreads will be 

larger (or in the best case scenario equal).

The centres of the SLWFs may be constrained by adding 

a quadratic penalty function to the spread functional Ω′, 

de�ning a new functional given by

Ω′

λ =

J′<J
∑

n=1

[〈wn0|r
2|wn0〉 − |〈wn0|r|wn0〉|

2

+ λ(r̄n − xn)
2],

 

(39)

where λ is a Lagrange multiplier and xn is the desired centre for 

the nth WF. The procedure outlined above for minimising Ω′ 

can be also adapted to deal with Ω′

λ (see [23] for details), and 

minimising Ω′

λ results in selectively-localised Wannier func-

tions subject to the constraint of �xed centres (SLWF  +  C). 

As noted above, it is observed that WFs derived using the 

SLWF  +  C approach naturally possess site symmetries, and 

their individual spreads are usually smaller than the corre-

sponding spreads of MLWFs, although the total spread, com-

bination of the J′ selectively optimised WFs and the J − J′ 

unoptimised functions, is larger than the total spread of the 

MLWFs (see, for instance last column of the table in �gure 1).

In the case of entangled bands, the SLWF(+C) method 

implicitly assumes that a subspace selection has been per-

formed, i.e. that a smooth J-dimensional manifold exists. 

Since for the Ω′ and Ω′

λ functionals it is not possible to de�ne 

an ΩI that measures the intrinsic smoothness of the underlying 

manifold, the additional constraints in equations (35) and (39) 

can only be imposed during the wannierisation step. This 

means that SLWF(+C) can be seamlessly coupled with the 
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disentanglement procedure, with no further additions to the 

original procedure of section 2.2.

3.3. SAWF and SLWF  +  C in GaAs

As an example of the capabilities of the SAWF and SLWF  +  C 

approaches, we show how to construct atom-centred WFs that 

possess the local site symmetries in gallium arsenide (GaAs). 

In particular, we discuss how to obtain one WF from the four 

valence bands of GaAs that is centred on the As atom and 

that transforms like the identity under the symmetry opera-

tions in Td, the site-symmetry group of the As site (for com-

pleteness, we also show one MLWF  and one SLWF without 

constraints). Since we only deal with the four valence bands 

of GaAs—an isolated manifold—no prior subspace selection 

is required for the wannierisation. All calculations were car-

ried out with the plane-wave DFT code Quantum ESPRESSO 

[1], employing PAW pseudopotentials [24, 25] from the psli-

brary (v1.0) [26]. For the exchange-correlation functional we 

use the Perdew–Burke–Ernzerhof approximation [27]. The 

energy cut-off for the plane-waves basis is set to 35.0 Ry, 

and a 4 × 4 × 4 uniform grid is used to sample the Brillouin 

zone. The lattice parameter is set to the experimental value  

(5.65 ̊A). The overlap matrices M
(k,b)
mn  in equation (9), the pro-

jection matrices Amnk in equation (26) and both d̃k(g) in equa-

tion (30) and Dk(g) in equation (31) have been computed with 

the pw2wannier90.x interface.

GaAs is a III–V semiconductor that crystallises in the fcc 

cubic structure, with a two-atom basis: the Ga cation and the 

As anion (space group F−43m); in our example the Ga atom 

is placed at the origin of the unit cell, whose Wyckoff letter is 

a and site-symmetry group is −43m, also known as Td. The 

As atom is placed at (1
4
, 1

4
, 1

4
), whose Wyckoff letter is c and 

site-symmetry group is also Td.

(a) (b) (c) (d)

(e) (f) (g) (h)

Method

r 〈r2〉 − r
2

r 〈r2〉 − r
2 Ω

[Å] [Å2] [Å] [Å2] [Å2]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 1. Top (�gure): comparison of two representative Wannier functions resulting from different minimisation schemes for gallium 
arsenide (larger pink spheres: Ga cation atoms, smaller yellow spheres: As anions): (a), (e) MLWF; (b), (f) SAWF; (c), (g) SLWF; (d), (h) 

SLWF  +  C. For MLWF, SLWF and SLWF  +  C, four s-type orbitals centred at the midpoints of the four Ga–As bonds are used as the initial 

guess. In the case of SLWF and SLWF  +  C, we optimise the �rst WF (and also constrain its centre to sit at (1
4
, 1

4
, 1

4
), i.e. on the As atom, 

for SLWF  +  C), while all the other WFs are left unoptimised. For SAWF, one s-type and three p -type orbitals centred on the As atom are 
used as initial guess. Speci�cally, the �rst row shows one MLWF (a), one SAWF with s character centred on As (b), one WF obtained with 
the selective localisation scheme (c) and one WF obtained obtained with the selective localisation scheme with additional constraints on its 
centre (d). The second row shows one of the other three WFs for all four methods. In particular: (e) MLWF, (f) SAWF with p  character, (g) 
unoptimised SAWF and (f) unoptimised SAWF  +  C. For all plots we choose an isosurface level of ±0.5 Å

−3
2  (blue for  +  values and red 

for  −  values) using the Vesta visualisation program [28]. Bottom (table): Cartesian coordinates of the centres r and minimised individual 

spreads 〈r2〉 − r2 for the two representative Wannier functions of each of the four different minimisation schemes and initial guesses 

described above. We also report the total spread Ω of all four valence WFs for each method.
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Marzari and Vanderbilt [15] have shown that the MLWFs 

for the 4-dimensional valence manifold are centred on the 

four As–Ga bonds, have sp3 character and can be found by 

specifying four s-like orbitals on each covalent bond as ini-

tial guess (two representatives are shown in �gures 1(a) and 

(e)). These bond-centred functions correspond to the irreduc-

ible representation A1 of the site-symmetry group C3v of the 

Wyckoff position e. Hence, the MLWFs can also be obtained 

with the SAWF approach by specifying the centres and the 

shapes of the initial projections, e.g. four s-like orbitals cen-

tred on the four As–Ga bonds, and the symmetry operations in 

the point group C3v.

Using the SAWF method we can enforce the WFs to have 

the local site symmetries. In particular, since Td has 5 irreps 

of dimension 1, 1, 2, 3 and 3 respectively, one can form an 

1  +  3–dimensional representation for the four SAWFs. Thus, 

a set of initial projections compatible with the symmetries of 

the valence bands is: one s-like orbital (1-dimensional irrep 

whose character is A1) and three p -like orbitals (3-dimen-

sional irrep whose character is T2) centred on As. Figure 1(b) 

shows the SAWF which corresponds to the A1 representation 

and transforms like the identity under Td and �gure 1(f) one 

of the three SAWF corresponding to the 3-dimensional irrep 

with p  character.

The same SAWF corresponding to the A1 representation 

can be obtained with the SLWF  +  C method by selectively 

localising one function J′ = 1 (J = 4) and constraining its 

centre to sit on the As site ( 1
4
, 1

4
, 1

4
). In the case of GaAs the 

SLWF  +  C method turns out to be very robust, to the point 

that four s-like orbitals randomly centred in the unit cell can 

be used as initial guess without affecting the result of the 

optimised function. Figure 1(c) shows the resulting function 

using the SLWF method without constraints, while �gure 1(d) 

shows the result using SLWF  +  C, which is identical to the 

SAWF in �gure 1(b). Finally, in the second row of �gures 1 

(e), (f), (g) and (h) one of the other three Wannier function is 

shown for all four minimisation scheme. In the case of SAWF, 

�gure 1(f), this WF is centred on the As atom, has a larger 

spread than the corresponding MLWF (�gure 1(e)) and shows 

a p -like character as expected. However, in the case of SLWF 

and SLWF  +  C (�gures 1(g) and (h)), these WFs are not opti-

mised and therefore they show a larger spread than the corre-

sponding MLWF and are somewhat less symmetric (see table 

in �gure 1).

It is worth to note that for this particular system, it is pos-

sible to achieve the result of a s-like and three p -like WFs 

also with the maximal localisation procedure if one carefully 

selects the initial projections, i.e. one s-like and three p -like 

orbitals on the As atom. The resulting WFs will possess the 

local site symmetries but will not correspond to the global 

minimum of the spread functional Ω. More precisely, they 

will correspond to a saddle point of Ω (unstable against small 

perturbations of the initial projections).

3.4. Parallelisation

In Wannier90 v3.0 we have implemented an ef�cient par-

allelisation scheme for the calculation of MLWFs using the 

message passing interface (MPI).

3.4.1. Calculation of the spread and distribution of large 

matrices. The time-consuming part in the evaluation of the 

spread Ω is updating the M(k,b) matrices according to equa-

tion  (16), since this requires computing overlap matrix ele-

ments between all pairs of bands, and between all k-points 

k and their neighbours k + b. Therefore, an ef�cient speed 

up for the evaluation of the spread can be achieved by dis-

tributing over several processes the calculation of the M(k,b) 

matrices for different k-points. In order to compute the M(k,b) 

according to equation (16), the Uk+b matrices are sent from 

process to process prior to the calculation of the overlap matri-

ces. We stress the fact that the Uk+b matrices are the only large 

arrays that have to be shared between processes, which limits 

the time spent in communication. The relatively large M(k,b) 

matrices are not sent between processes for the evaluation 

of equations  (7) and (8). Instead, it is enough to collect the 

contrib utions to the spread from the different k-points, i.e. a 

set of scalars, and then sum them up for evaluation of the total 

spread. This parallelisation scheme is illustrated in �gure 2 for 

a 3 × 3 mesh of k-points with 9 MPI processes.

Moreover, we emphasise that our parallelisation scheme 

relies on the evaluation of relevant matrices over k-points on 

each process (or core, since the only parallelisation scheme 

currently implemented is MPI and typically each process is 

assigned to a different CPU core). For systems with large 

number of k-points and bands, it is also desirable to distribute 

these matrices across the available processes to reduce the 

memory requirements. For example, in the case of isolated 

bands, instead of storing all the M(k,b) matrices on all cores 

(requiring an allocation per core of dimension J × J × N × Nb, 

where Nb is the number neighbours of each of the N k-points 

of the mesh) we distribute the matrices across the Nc cores. In 

Zk

∆Wk Uk

Uk+b

M
(k,b)

Figure 2. Illustration of the parallelisation scheme for a 3 × 3 
mesh of k-points (black dots) and one MPI process per k-point. The 
calculation of the M(k,b), Zk, ∆Wk and Uk  matrices are distributed 
over processes by k-point. The Uk+b matrices for the neighbouring 
k-points are sent from process to process (orange arrows) for the 
calculation of the M(k,b) and Zk matrices.
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particular, only the root process stores the full matrices (for 

I/O purposes) while all other processes just store the M(k,b) 

matrices for the k-points associated with the given process. In 

such a way, the memory requirement per core (for the M(k,b) 

matrices) decreases by a factor of approximately Nc.

3.4.2. Minimisation of the spread. The minimisation of the 

spread functional is based on an iterative steepest-descent or 

conjugate-gradient algorithm. In each iteration, the unitary 

matrices Uk  are updated according to Uk = Uk exp (∆Wk) 
[15], where ∆Wk = αDk, see equation (15). Updating the Uk  

matrices according to this equation  is by far the most time-

consuming part in the iterative minimisation algorithm, as it 

requires a diagonalisation of the ∆Wk matrices. A signi�cant 

speed-up can be obtained, however, by distributing the diag-

onalisation of the different ∆Wk matrices over several pro-

cesses, and performing the calculations fully in parallel. The 

evaluation of ∆Wk essentially requires the calculation of the 

overlap matrices M(k,b), as discussed above.

3.4.3. Disentanglement. The disentanglement procedure is 

concerned with �nding the optimal subspace Sk. As the func-

tional ΩI measures the global subspace dispersion across the 

Brillouin zone, at �rst sight it is not obvious that the task of 

minimising the spread ΩI can be parallelised with respect to 

the k-points. In the iterative algorithm of equation  (21), the 

systematic reduction of the spread functional at the ith itera-

tion is achieved by minimising the spillage of the subspace 

S
(i)
k  over the neighbouring subspaces from the previous itera-

tion S
(i−1)
k+b . This problem reduces to the diagonalisation of N 

independent matrices (N is the total number of k-points of the 

mesh), where an ef�cient speed-up of the disentanglement 

procedure can be achieved by distributing the diagonalisation 

of the Z
(i)
k  matrices of equation (23) over several processes, 

which can be done fully in parallel. Since the construction 

of Z
(i)
k  only requires the knowledge of the U

(i−1)
k+b  matrices, 

these must be communicated between processes, as shown in 

�gure 2. This results in a similar time spent in communication 

for the disentanglement part of the code as for the wannierisa-

tion part.

3.4.4. Performance. We have tested the performance of this 

parallelisation scheme for the calculation of the MLWFs in a 

FePt(5)/Pt(18) thin �lm. Computational details were given in 

[29]. The benchmarks have been performed on the JURECA 

supercomputer of the Jülich Supercomputing Center. We 

have extracted an optimal subspace of dimension J  =  414 

from a set of 580 Bloch states per k-point. The upper limit of 

the inner window was set to 5 eV above the Fermi energy, and  

414 MLWFs were constructed by minimising the spread 

Ω. The performance benchmark was based on the average 

wall-clock time for a single iteration of the minimisation 

procedure (several thousand iterations are usually needed 

for convergence). We �rst analyse the weak scaling of our 

implementation, i.e. how the computation time varies with 

the number of cores Nc for a �xed number of k-points per 

process. We show in �gure 3(a) the time per iteration for the 

disentanglement and wannierisation parts of the minimisa-

tion, always using one k-point per process. As we vary the 

number of k-points N from 4 to 144, the computation time 

increases only by a factor of 1.3 and 1.8 for disentanglement 

and wannierisation, respectively. We then demonstrate the 

strong scaling of our parallelisation scheme in �gure 3(b), 

i.e. how the computation time varies with the number of 

cores Nc for a �xed number N  =  64 of k-points. When vary-

ing the number of cores from 4 to 64, we observe a decrease 

of the computation time per iteration by a factor of 12.6 

and 9.5 for disentanglement and wannierisation, respec-

tively. The deviation from ideal scaling is mostly explained 

by the time spent in inter-core communication of the Uk+b 

matrices.

4. Enhancements in functionality

In this section  we describe a number of enhancements to 

the functionality of the core Wannier90 code, namely: the 

ability to compute and visualise spinor-valued WFs, including 

developments to the interface with the Quantum ESPRESSO 

package to cover also the case of non-collinear spin calcul-

ations performed with ultrasoft pseudopotentials (previously 

not implemented); an improvement to the method for interpo-

lating the k-space Hamiltonian; the ability to select a subset 

from a larger set of projections of localised trial orbitals onto 

the Bloch states for initialising the WFs; and new function-

ality for plotting WFs in Gaussian cube format on WF-centred 

grids with non-orthogonal translation vectors.

4.1. Spinor-valued Wannier functions with ultrasoft and 

projector-augmented-wave pseudopotentials

The calculation of the overlap matrix in equation (17) within 

the ultrasoft-pseudopotential formalism proceeds via the 

inclusion of so-called augmentation functions [30],

Figure 3. Plots of the time per single minimisation iteration as 
a function of the number of cores Nc. (a) Weak scaling of the 
implementation, where the number of k-points per process is �xed 
to one, i.e. Nc = N . The time only increases by a factor 1.3 (1.8) for 
the disentanglement (wannierisation) parts of the code, when going 
from Nc = 4 to Nc = 144. (b) Strong scaling of the algorithm for 
a �xed number of k-points N  =  64. The time per iteration with one 
single CPU (serial) is reported in the �gure.
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M(k,b)
mn = 〈umk|un,k+b〉

+
∑

Iij

QI
ij(b)〈ψ

ps
mk|B

(k,b)
Iij |ψps

n,k+b〉,

 

(40)

where |ψ
ps
mk〉 is the pseudo-wavefunction,

QI
ij(b) =

∫
dr QI

ij(r)e
−ib·r

 (41)

is the Fourier transform of the augmentation charge, and 

B
(k,b)
Iij = |βk

Ii〉〈β
k+b
Ij |, where |βk

Ii〉 denotes the ith projector of 

the pseudopotential on the Ith atom in the unit cell. We refer 

to appendix B of [30] for detailed expressions.

When spin–orbit coupling is included, the Bloch functions 

become two-component spinors (ψ↑
nk(r),ψ

↓
nk(r))

T , where 

ψσ

nk(r) is the spin-up (for σ = ↑) or spin-down (for σ = ↓) 

component with respect to the chosen spin quantisation axis. 

Accordingly, QI
ij(b) becomes QIσσ′

ij (b) (see equation (18) in 

[31]) and equation (40) becomes

M(k,b)
mn = 〈umk|un,k+b〉

+
∑

Iijσσ′

QIσσ′

ij (b)〈ψps,σ
mk |B

(k,b)
Iij |ψps,σ′

n,k+b〉.
 (42)

The above expressions, together with the corresponding ones 

for the matrix elements of the spin operator, have been imple-

mented in the pw2wannier90.x interface between Quantum 

ESPRESSO and Wannier90.

The plotting routines of Wannier90 have also been adapted 

to work with the complex-valued spinor WFs obtained from 

calculations with spin–orbit coupling. It then becomes neces-

sary to decide how to represent graphically the information 

contained in the two spinor components.

One option is to only plot the norm |wnk(r)| =√
|w↑

nk(r)|
2 + |w↓

nk(r)|
2  of spinor WFs (where the up- and 

down-spin components of the spinor WF w↑,↓ are obtained 

as in equation (2) by replacing ψ with ψ↑,↓), which is remi-

niscent of the total charge density in the case of a 2×2 den-

sity matrix in non-collinear DFT. Another possibility is to 

plot independently the up- and down-spin components of 

the spinor WF. Since each of them is in general complex-

valued, two options are provided in the code: (i) to plot 

only the magnitudes |w↑
nk(r)| and |w↓

nk(r)| of the two comp-

onents; or (ii) to encode the phase information by output-

ting |w↑
nk(r)|sgn(Re{w

↑
nk(r)}) and |w↓

nk(r)|sgn(Re{w
↓
nk(r)}), 

where sgn is the sign function. Which of these various options 

is adopted by the Wannier90 code is controlled by two 

input parameters, wannier_plot_spinor_mode and 

wannier_plot_spinor_phase.

Finally we note that, for WFs constructed from ultrasoft 

pseudopotentials or within the projector-augmented-wave 

(PAW) method, only pseudo-wavefunctions represented on 

the soft FFT grid are considered in plotting WFs within 

the present scheme, that is, the WFs are not normalised. 

We emphasise that this affects only plotting of the WFs 

in real-space and not the calculation of the MLWFs (the 

overlap matrices being correctly computed by the interface 

codes).

4.2. Improved Wannier interpolation by minimal-distance 

replica selection

The interpolation of band structures (and many other quantities) 

based on Wannier functions is an extremely powerful tool [32–

34]. In many respects it resembles Fourier interpolation, which 

uses discrete Fourier transforms to reconstruct faithfully contin-

uous signals from a discrete sampling, provided that the signal 

has a �nite bandwidth and that the sampling rate is at least twice 

the bandwidth (the so-called Nyquist–Shannon condition).

In the context of Wannier interpolation, the ‘sampled 

signal’ is the set of matrix elements

Hmnkj
= 〈χmkj

|H|χnkj
〉 (43)

of a lattice-periodic operator such as the Hamiltonian, de�ned 

on the same uniform grid {kj} that was used to minimise the 

Wannier spread functional (see section 2.1). The states |χnkj
〉 

are the Bloch sums of the WFs, related to ab initio Bloch 

eigenstates by |χnkj
〉 =

∑

m |ψmkj
〉Umnkj

.

To reconstruct the ‘continuous signal’ Hmnk at arbitrary k, 

the matrix elements of equation (43) are �rst mapped onto real 

space using the discrete Fourier transform

H̃mnR = 〈wm0|H|wnR〉 =
1

N

N∑

j=1

e−ikj·RHmnkj
, (44)

where N = N1 × N2 × N3 is the grid size (which is also the 

number of k-points in Wannier90). The matrices Hmnkj
 are 

then interpolated onto an arbitrary k using an inverse discrete 

Fourier transform,

Hmnk =
∑

R′

eik·R′

H̃mnR′ , (45)

where the sum is over N lattice vectors R′, and the interpo-

lated energy eigenvalues are obtained by diagonalising Hk . In 

the limit of an in�nitely dense grid of k-points the procedure is 

exact and the sum in equation (45) becomes an in�nite series. 

Owing to the real-space localisation of the Wannier functions, 

the matrix elements H̃mnR become vanishingly small when the 

distance between the Wannier centres exceeds a critical value 

L (the ‘bandwidth’ of the Wannier Hamiltonian), so that actu-

ally only a �nite number of terms contributes signi�cantly to 

the sum in equation (45). This means that, even with a �nite 

N1 × N2 × N3 grid, the interpolation is still accurate provided 

that—by analogy with the Nyquist–Shannon condition—the 

‘sampling rate’ Ni along each cell vector ai is suf�ciently large 

to ensure that Ni|ai| > 2L.

Still, the result of the interpolation crucially depends on 

the choice of the N lattice vectors to be summed over in equa-

tion (45). Indeed, when using a �nite grid, there is a consider-

able freedom in choosing the set {R′} as H̃mnR is invariant 

under R → R + T for any vector T of the Born–von Karman 

superlattice generated by {Ai = Niai}. The phase factor in 
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equation (45) is also invariant when k ∈ {kj}, but not for arbi-

trary k. Hence we need to choose, among the in�nite set of 

‘replicas’ R′ = R + T of R , which one to include in equa-

tion  (45). We take the original vectors R  to lie within the 

Wigner–Seitz supercell centred at the origin. If some of them 

fall on its boundary then their total number exceeds N and 

weight factors must be introduced in equation (45). For each 

combination of m, n and R , the optimal choice of T is the one 

that minimises the distance

|rm − (rn + R + T)| (46)

between the two Wannier centres. With this choice, the spu-

rious effects arising from the arti�cial supercell periodicity 

are minimised.

Earlier versions of Wannier90 implemented a simpli�ed 

procedure whereby the vectors R′ in equation (45) were chosen 

to coincide with the unshifted vectors R that are closer to the 

origin than to any other point T on the superlattice, irrespective 

of the WF pair (m, n). As illustrated in �gure  4, this proce-

dure does not always lead to the shortest distance between the 

pair of WFs, especially when some of the Ni are small and the 

Wannier centres are far from the origin of the cell.

Wannier90 now implements an improved algorithm that 

enforces the minimal-distance condition of equation  (46), 

yielding a more accurate Fourier interpolation. The algorithm 

is the following:

 (a)  For each term in equation (45) pick, among all the replicas 

R′ = R + T of R , the one that minimises the distance 

between Wannier centres (equation (46)).

 (b)  If there are NmnR different vectors T for which the 

distance of equation (46) is minimal, then include all of 

them in equation (45) with a weight factor 1/NmnR.

An equivalent way to describe these steps is that (a) we choose 

T such that rn + R + T falls inside the Wigner–Seitz supercell 

centred at rm (see �gure 4), and that (b) if it falls on a face, 

edge or vertex of the Wigner–Seitz supercell, we keep all the 

equivalent replicas with an appropriate weight factor. In prac-

tice the condition in step (b) is enforced within a certain toler-

ance, to account for the numerical imprecision in the values 

of the Wannier centres and in the de�nition of the unit cell 

vectors. Although step (b) is much less important than (a) for 

obtaining a good Fourier interpolation, it helps ensuring that 

the interpolated bands respect the symmetries of the system; if 

step (b) is skipped, small arti�cial band splittings may occur at 

high-symmetry points, lines, or planes in the BZ.

The procedure outlined above amounts to replacing equa-

tion (45) with

Hmnk =
∑

R

1

NmnR

NmnR
∑

j=1

eik·(R+T
( j)
mnR

)H̃mnR,

 (47)

where {T
( j)
mnR} are the NmnR vectors T that minimise the dis-

tance of equation  (46) for a given combination of m, n and 

R; R  lies within the Wigner–Seitz supercell centred on the 

origin.

The bene�ts of this modi�ed interpolation scheme are 

most evident when considering a large unit cell sampled at 

the Γ point only. In this case N  =  1 so that equation  (45) 

with {R′} = {R} = {0} would reduce to Hmnk = H̃mn0, 

yielding interpolated bands that do not disperse with k. This 

is nonetheless an artefact of the choice {R′} = {0} (of ear-

lier versions of Wannier90) and not an intrinsic limitation of 

Wannier interpolation, as �rst demonstrated in [32] for one-

dimensional systems. Indeed, equation (47), which in a sense 

extends [32] to any spatial dimension, becomes in this case

Hmnk =
H̃mn0

Nmn0

Nmn0∑

j=1

eik·T
( j)
mn0 , (48)

Figure 4. Owing to the periodicity of the Wannier functions over 

the Born–von Karman supercell (with size 2 × 2 here), the matrix 

element H̃mnR describes the interaction between the mth WF wm0  

(shown in orange) with centre rm inside the home unit cell R = 0 
(green shaded area) and the nth WF wnR  (shown in blue) centred 
inside the unit cell R , or any of its supercell-periodic replicas 
displaced by a superlattice vector T. When performing Wannier 
interpolation, we now impose a minimal-distance condition by 
choosing the replica wn,R+T of wnR  whose centre lies within the 
Wigner–Seitz supercell centred at rm (thick orange line).

Figure 5. Comparison between the bands obtained using the earlier 
interpolation procedure (blue lines), those obtained using the 
(current) modi�ed approach of equation (47) (orange lines), and the 
ab initio bands (black crosses). (a) Linear chain of carbon atoms, 
with 12 atoms per unit cell (separated by a distance of 1.3 Å  along 
the z direction) and Γ-point sampling. 36 Wannier functions have 
been computed starting from projections over p x and p y  orbitals 
on carbon atoms and s-orbitals midbond between them. A frozen 
window up to the Fermi energy (set to zero in the plot) has been 
considered, while the disentanglement window included all states 
up to  ∼14 eV above the Fermi level. (b) Bulk silicon, with the BZ 
sampled on an unconverged 3 × 3 × 3 grid of k-points.
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which can produce dispersive bands. This is illustrated in 

�gure 5(a) for the case of a one-dimensional chain of carbon 

atoms: the interpolated bands obtained from equation  (45) 

with {R′} = {R} = {0} (earlier version of Wannier90) are 

�at, while those obtained from equation (47) (new versions of 

Wannier90) are in much better agreement with the dispersive 

ab initio bands up to a few eV above the Fermi energy.

Clear improvements in the interpolated bands are also 

obtained for bulk solids, as shown in �gure  5(b) for the 

case of silicon. The earlier implementation breaks the two-

fold degeneracy along the X  −  W line, with one of the two 

bands becoming �at. The new procedure recovers the cor-

rect degeneracies, and reproduces more closely the ab initio 

band structure (the remaining small deviations are due to 

the use of a coarse k-point mesh that does not satisfy the  

Nyquist–Shannon condition, and would disappear for denser 

k-grids together with the differences between the two interpo-

lation procedures).

4.3. Selection of projections

In many cases, and particularly for entangled bands, it is 

necessary to have a good initial guess for the MLWFs in 

order to properly converge the spread to the global min-

imum. Determining a good initial guess often involves a trial 

and error approach, using different combinations of orbital 

types, orientations and positions. While for small systems 

performing many computations of the projection matrices 

is relatively cheap, for large systems there is a cost associ-

ated with storing and reading the wavefunctions to compute 

new projection matrices for each new attempt at a better ini-

tial guess. Previously, the number of projections that could 

be speci�ed had to be equal to the number J of WFs to be 

constructed. The latest version of the code lifts this restric-

tion, making it possible to de�ne in the pre-processing step 

a larger number J+   >  J of projection functions to consider 

as initial guesses. In this way, the computationally expen-

sive and potentially I/O-heavy construction of the projection 

matrices Ak (of dimension J × J+ at each �k ) is performed 

only once for all possible projections that a user would like 

to consider.

Once the Ak matrices have been obtained, one proceeds 

with constructing the MLWFs by simply selecting, via a new 

input parameter (select_projections) of the Wannier90 

code, which J columns to use among the J+ that were com-

puted by the interface code. Experimenting with different trial 

orbitals can thus be achieved by simply selecting a different 

set of projections within the Wannier90 input �le, without 

the need to perform the pre-processing step again.

Similarly, another use case for this new option is the con-

struction of WFs for the same material but for different groups 

of bands. Typically one would have to modify the Wannier90 

input �le and run the interface code multiple times, while now 

the interface code may compute Ak for a superset of trial 

orbitals just once, and then different subsets may be chosen 

by simple modi�cation of a single input parameter. As a 

demonstration, we have adapted example11 (silicon band 

structure) of the Wannier90 distribution, that considers two 

band groups: (a) the valence bands only, described by four 

bond-centred s orbitals, and (b) the four valence and the four 

lowest-lying conduction bands together, described by atom-

centred sp3 orbitals. In the example, we specify projections 

onto all 12 trial orbitals, and the different cases are covered 

by specifying in the Wannier90 input �le which subset of 

projections is required.

4.4. Plotting cube �les with non-orthogonal vectors

In Wannier90 v3.0 it is possible to plot the MLWFs in real-

space in Gaussian cube format, including the case of non-

orthogonal cell lattice vectors. Many modern visualisation 

programs such as Vesta [28] are capable of handling non-

orthogonal cube �les and the cube �le format can be read 

by many computational chemistry programs. Wannier90’s 

representation of MLWFs in cube format can be signi�cantly 

more compact than using the alternative xsf format. With 

the latter, MLWFs are calculated (albeit with a coarse sam-

pling) on a supercell of the computational cell that can be 

potentially large (the extent of the supercell is controlled by 

an input parameter wannier_plot_supercell). Whereas, 

with the cube format, each Wannier function is represented 

on a grid that is centred on the Wannier function itself and 

has a user-de�ned extent, which is the smallest parallelepiped 

(whose sides are aligned with the cell vectors) that can enclose 

a sphere with a user-de�ned radius wannier_plot_radius. 

Because MLWFs are strongly localised in real space, relatively 

small cut-offs are all that is required, signi�cantly smaller 

than the length-scale over which the MLWFs themselves are 

periodic. As a result, the cube format is particularly useful 

when a more memory-ef�cient representation is needed. The 

cube format can be activated by setting the input parameter 

wannier_plot_mode to cube, and the code can handle 

both isolated molecular systems (treated within the super-

cell approximation) as well as periodic crystals by setting 

wannier_plot_mode to either molecule or crystal, 

respectively.

5. New post-processing features

Once the electronic bands of interest have been disen-

tangled and wannierised to obtain well-localised WFs, the 

Wannier90 software package includes a number of modules 

and utilities that use these WFs to calculate various electronic-

structure properties. Much of this functionality exists within 

postw90.x, an MPI-parallel code that forms an integral part of 

the Wannier90 package. In v2.x of Wannier90, postw90.x 

included functionality for computing densities of states and 

partial densities of states, energy bands and Berry curvature 

along speci�ed lines and planes in k-space, anomalous Hall 

conductivity, orbital magnetisation and optical conductivity, 

Boltzmann transport coef�cients within the relaxation time 

approximation, and band energies and derivatives on a generic 

user-de�ned list of k-points. Some further functionality exists 

in a set of utilities that are provided as part of the Wannier90 

package, including a code (w90pov.F90) to plot WFs rendered 

using the Persistence of Vision Raytracer (POV-Ray) [35] 
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code and to compute van der Waals interactions with WFs 

(w90vdw.F90).

In addition, there are a number of external packages for 

computing advanced properties based on WFs and which 

interface to Wannier90. These include codes to generate 

tight-binding models such as pythTB [36] and tbmodels 

[37], quantum transport codes such as sisl [38], gollum 

[39], omen [40] and nanoTCAD-ViDES [41], the EPW 

[42] code for calculating properties related to electron-phonon 

interactions and WannierTools [43] for the investigation 

of novel topological materials.

Below we describe some of the new post-processing fea-

tures of Wannier90 that have been introduced in the latest 

version of the code, v3.0.

5.1. postw90.x: shift current

The photogalvanic effect (PGE) is a nonlinear optical response 

that consists in the generation of a direct current (DC) when 

light is absorbed [44–46]. It can be divided phenomenologi-

cally into linear (LPGE) and circular (CPGE) effects, which 

have different symmetry requirements within the acentric 

crystal classes. The CPGE requires elliptically-polarised light, 

and occurs in gyrotropic crystals (see next subsection). The 

LPGE occurs with linearly or unpolarised light as well; it is 

present in piezoelectric crystals and is given by

Ja(0) = 2σabc(0;ω,−ω)Eb(ω)Ec(−ω),
 (49)

where J(0) is the induced DC photocurrent density, 

E(ω) = E∗(−ω) is the amplitude of the optical electric �eld, 

and σabc = σacb = σ
∗

abc is a nonlinear photoconductivity 

tensor.

The shift current is the part of the LPGE photocurrent gen-

erated by interband light absorption [47]. Intuitively, it arises 

from a coordinate shift accompanying the photoexcitation of 

electrons from one band to another. Like the intrinsic anomalous 

Hall effect [48], the shift current involves off-diagonal velocity 

matrix elements between occupied and empty bands, depending 

not only on their magnitudes but also on their phases [49–52].

The shift current along direction a induced by light that is 

linearly polarised along b is described by the following photo-

conductivity tensor [52, 53]:

σ
shift
abb (0;ω,−ω) = −

π|e|3

�2

∫

BZ

dk

(2π)3

∑

n,m

fnmk Rab
nmk

×
∣∣rb

nmk

∣∣2 δ(ωmnk − ω).

 

(50)

Here, fnmk = fnk − fmk is the difference between occupation 

factors, �ωmnk = ǫmk − ǫnk is the difference between energy 

eigenvalues of the Bloch bands, rb
nmk is the bth Cartesian 

comp onent of the interband dipole matrix (the off-diagonal 

part of the Berry connection matrix Anmk = i〈unk|∂kumk〉), and

Rab
nmk = ∂ka

arg
(

rb
nmk

)

− Aa
nnk + Aa

mmk (51)

is the shift vector (not to be confused with the lattice vector R , 

or with the matrix R(k,b) de�ned in equation (12)). The shift 

vector has units of length, and it describes the real-space shift 

of wavepackets under photoexcitation.

The numerical evaluation of equation (51) is tricky because 

the individual terms therein are gauge dependent, and only 

their sum is unique. Different strategies were discussed 

in the early literature in the context of model calculations  

[51, 54], and more recently for ab initio calculations. The ab 

initio implementation of Young and Rappe [55] employed 

a gauge-invariant k-space discretisation of equation  (51), 

inspired by the discretised Berry-phase formula for electric 

polarisation [56].

The implementation in Wannier90 is based instead on 

the formulation of Sipe and co-workers [52, 57]. In this for-

mulation, the shift (interband) contribution to the LPGE tensor 

in equation (49) is expressed as

σ
shift
abc (0;ω,−ω) =

iπ|e|3

4�2

∫

BZ

dk

(2π)3

∑

n,m

fnmk

×

(
rb

mnkrc;a
nmk + rc

mnkrb;a
nmk

)

× [δ(ωmnk − ω) + δ(ωnmk − ω)] ,
 (52)

where

rb;a
nmk = ∂ka

rb
nmk − i (Aa

nnk − Aa
mmk) rb

nmk (53)

is the generalised derivative of the interband dipole. When 

b  =  c, equation (52) becomes equivalent to equation (50) [52].

The generalised derivative rb;a
nmk is a well-behaved (covar-

iant) quantity under gauge transformation but—as in the case 

of the gauge-invariant shift vector—this is not the case for 

the individual terms in equation  (53), leading to numerical 

instabilities. To circumvent this problem, Sipe and co-workers 

used k · p perturbation theory to recast equation (53) as a sum-

mation over intermediate virtual states where the individual 

terms are gauge covariant [52, 57]. That strategy has been 

successfully employed to evaluate the shift-current spectrum 

from �rst principles [58, 59].

As it is well known, similar ‘sum-over-states’ expressions 

can be written for other quantities involving k derivatives, 

such as the inverse effective-mass tensor and the Berry curva-

ture. When evaluating those expressions, a suf�cient number 

of virtual states should be included to achieve convergence. 

Alternatively, one can work with a basis spanning a �nite 

number of bands, such as a tight-binding or Wannier basis, 

and carefully reformulate k · p perturbation theory within that 

incomplete basis to avoid truncation errors. This reformulation 

was carried out in [60] for the inverse effective-mass tensor, 

and in [33] for the Berry curvature; the formalism of [33] is at 

the core of the berry.F90 module of postw90, where Berry 

curvatures and related quantities are computed by Wannier 

interpolation. The same interpolation strategy was used in 

[61] and [62] to evaluate equation (52), and the approach of 

[62] is now implemented in the berry.F90 module.

5.2. postw90.x: gyrotropic module

In the previous subsection we considered the shift current, 

an effect that occurs in piezoelectric crystals. Here we turn 
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to a host of effects that occur in a different group of acentric 

crystals: those belonging to the gyrotropic crystal classes, 

which include the chiral, polar, and optically-active crystal 

classes [44].

To motivate the gyrotropic effects considered below, let us 

start from the more familiar magneto-optical effects. To review, 

the spontaneous magnetisation of ferromagnets endows their 

conductivity tensor σab(ω) with an antisymmetric part. In the 

DC limit this antisymmetric conductivity describes the anom-

alous Hall effect (AHE), and at �nite frequencies it describes 

magneto-optical effects such as Faraday rotation in transmis-

sion and magnetic circular dichroism in absorption. In para-

magnets, those effects appear under applied magnetic �elds.

As �rst pointed out in [63, 64], an antisymmetric conduc-

tivity can be induced in certain nonmagnetic (semi)conductors 

by purely electrical means: by passing a current through the 

sample. Symmetry arguments indicate that this is allowed in 

the gyrotropic crystal classes, and the �rst experimental dem-

onstration consisted in the measurement of a current-induced 

change in the rotatory power of p -doped trigonal tellurium 

[65, 66]. When linearly polarised light of frequency ω  prop-

agates along the trigonal ẑ axis of tellurium in the presence 

of a current density j = jzẑ, the change in rotatory power is 

proportional to D̃zz(ω) jz, where

D̃ab(ω) =

∫

BZ

dk

(2π)3

∑

n

f0(ǫnk)∂ka
Ω̃b

nk(ω). (54)

In this expression f 0 is the equilibrium occupation factor, and

Ω̃nk(ω) = −

∑

m

ω
2
mnk

ω
2
mnk − ω2

Im[Anmk × Amnk], (55)

where Anmk is the Berry connection matrix introduced in sec-

tion 5.1. At zero frequency, Ω̃nk(ω) reduces to the Berry cur-

vature Ωnk = ∇k × Annk.

The DC or transport limit of the above current-induced 

Faraday effect is the current-induced AHE, or nonlinear AHE 

[67–71]. Like the linear (spontaneous) AHE in ferromagnetic 

metals, the nonlinear (current-induced) AHE in gyrotropic con-

ductors has an intrinsic contribution associated with the Berry 

curvature. It is given by ja ∝ τεadcDbdEbEc, where E is the 

electric �eld, τ  is the relaxation time of the conduction elec-

trons, εabc is the alternating tensor, and Dab = D̃ab(ω = 0) is 

the ‘Berry-curvature dipole’ [67]. After performing an integra-

tion by parts in equation (54), the quantities Dab and D̃ab(ω) 

can be easily evaluated with the help of the berry.F90 module.

Along with nonlinear magneto-optical and anomalous Hall 

effects, the �ow of electrical current in a gyrotropic conducting 

medium also generates a net magnetisation. This kinetic mag-

netoelectric effect was originally proposed for bulk chiral con-

ductors [64, 72], and later for two-dimensional (2D) inversion 

layers with an out-of-plane polar axis [73, 74], where it has 

been studied intensively [75]. The kinetic magnetoelectric 

effect in 2D—also known as the Edelstein effect—is a purely 

spin effect, whereas in bulk crystals an orbital contribution is 

also present [72]. The orbital kinetic magnetoelectric effect 

is given by Ma ∝ τKbaEb, where the tensor Kab is obtained 

from Dab by replacing the Berry curvature with the intrinsic 

magnetic moment of the Bloch states, [76–78] a quantity that 

is also provided by the berry.F90 module [79].

Another phenomenon characteristic of gyrotropic crystals 

is the circular photogalvanic effect (CPGE) that was men-

tioned brie�y in section  5.1. This nonlinear optical effect 

consists in the generation of a photocurrent that reverses 

sign with the helicity of light [44–46, 64, 80], and it occurs 

when light is absorbed via interband or intraband scattering 

processes. The intraband contribution to the CPGE can 

be expressed in terms of the Berry curvature dipole Dab as 

ja ∝
ωτ

2Dab

1+ω
2
τ

2 Im [E(ω)× E∗(ω)]b  [67, 81, 82].

The above effects are being very actively investigated in 

connection with novel materials ranging from topological 

semimetals [68, 83, 84] to monolayer and bilayer transition-

metal dichalcogenides [69–71]. The sensitivity of both the 

Berry curvature and the intrinsic orbital moment to the details 

of the electronic structure, together with the need to sample 

them on a dense mesh of k points, calls for the development 

of accurate and ef�cient ab initio methodologies, and the 

Wannier interpolation technique is ideally suited for this task.

The Wannier interpolation methodology for gyrotropic 

effects was presented in [78], where it was applied to p -doped 

trigonal tellurium, and the resulting computer code has been 

incorporated in postw90 as the gyrotropic.F90 module. 

The reader is referred to [78] for more details such as the pref-

actors in the expressions above, as well as the formulas for 

natural optical activity, which is also evaluated in the same 

module.

5.3. postw90.x: spin Hall conductivity

The spin Hall effect (SHE) is a phenomenon in which a spin 

current is generated by applying an electric �eld. The cur-

rent is often transverse to the �eld (Hall-like), but this is not 

always the case [85]. The SHE is characterised by the spin 

Hall conductivity (SHC) tensor σ
spin,c
ab  as follows:

Jspin,c
a (ω) = σ

spin,c
ab (ω)Eb(ω), (56)

where J
spin,c
a  is the spin-current density along direction a with 

its spin pointing along c, and Eb is the external electric �eld 

of frequency ω  applied along b. In non-magnetic materials the 

equal number of up- and down-spin electrons forces the AHE 

to vanish, resulting in a pure spin current.

Like the AHC, the SHC contains both intrinsic and extrinsic 

contributions [86]. The intrinsic contribution to the SHC can 

be calculated from the following Kubo formula, [87]

σ
spin,c
ab (ω) = −

e2

�

1

VN

∑

k

∑

n

fnkΩ
spin,c
nk,ab(ω), (57a)

Ωspin,c
nk,ab(ω) = �

2
∑

m �=n

−2Im[〈ψnk|
2
�

j
spin,c
a |ψmk〉〈ψmk|vb|ψnk〉]

(ǫnk − ǫmk)2
− (�ω + iη)2

,

 (57b)

where sc, va and j
spin,c
a = 1

2
{sc, va} are the spin, velocity and 

spin current operators, respectively; V  is the cell volume, 

and N is the total number of k-points used to sample the BZ. 

Equations (57) are very similar to the Kubo formula for the 
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AHC, except for the replacement of a velocity matrix element 

by a spin-current matrix element. As mentioned in the pre-

vious two subsections, Wannier-interpolation techniques are 

very ef�cient at calculating such quantities.

A Wannier-interpolation method scheme for evaluating 

the intrinsic SHC was developed in [87] (see also [88] for a 

related but independent work). The required quantities from 

the underlying ab initio calculation are the spin matrix ele-

ments S
(0)
mnk,a = 〈ψ

(0)
mk |sa|ψ

(0)
nk 〉, the Hamiltonian matrix ele-

ments H
(0)
mnk = 〈ψ

(0)
mk |H|ψ

(0)
nk 〉 = ǫ

(0)
mkδmn, and the overlap 

matrix elements of equation  (17). Since the calculation of 

all these quanti ties has been previously implemented in 

pw2wannier90.x (the interface code between pwscf and 

Wannier90), this advantageous interpolation scheme can 

be readily used while keeping to a minimum the interaction 

between the ab initio code and Wannier90.

The application of the method to fcc Pt is illustrated in 

�gure 6. Panel (a) shows the calculated SHC as a function of 

the Fermi-level position, and panel (b) depicts the ‘spin Berry 

curvature’ of equation (57b) that gives the contribution from 

each band state to the SHC. The aforementioned functionali-

ties have been incorporated in the berry.F90, kpath.F90 and 

kslice.F90 modules of postw90.x.

5.4. postw90.x: parallelisation improvements

The original implementation of the berry.F90 module in 

postw90.x (for computing Berry-phase properties such as 

orbital magnetisation and anomalous Hall conductivity [79]), 

introduced in Wannier90 v2.0, was written with code read-

ability in mind and had not been optimised for computational 

speed. In Wannier90 v3.0, all parts of the berry.F90 module 

have been parallelised while keeping the code readable; 

moreover, its scalability has been improved, accelerating its 

performance by several orders of magnitude [89].

To illustrate the improvements in performance, we present 

calculations on a 128-atom supercell of GaAs interstitially 

doped with Mn. We emphasise that here we are not interested 

in the results of the calculation but simply on its performance 

testing, and that the choice of the system does not affect the 

scaling results that we report. We use a lattice constant of the 

elementary cell of 5.65 Å . We use norm-conserving relativ-

istic pseudopotentials with the PBE exchange-correlation 

functional. The energy cut-off for the plane waves is set to 

40 Ry, and the Brillouin-zone sampling of the supercell is 

3 × 3 × 3. We use a Gaussian metallic smearing with a broad-

ening of 0.015 Ry. For the non-self-consistent step of the 

calculation, 600 bands are computed and used to construct 

517 Wannier functions. The initial projections are chosen as 

a set of sp3 orbitals centred on each Ga and As atom, and a 

set of d orbitals on Mn. The calculations were performed on 

the Prometheus supercomputer of PL-GRID (in Poland). The 

code was compiled with the Intel ifort compiler (v15.0.2), 

using the OpenMPI libraries (v1.8.4) and BLAS/LAPACK 

routines from Intel MKL (v11.3.1).

The Berry-phase calculations can be performed in 

three distinct ways: (i) 3D quantities in k-space (routine 

berry_main), (ii) the same quantities resolved on 2D planes 

(routine kslice.F90), and (iii) 1D paths (routine kpath.F90) 

in the Brillouin zone. In the benchmarks, we will refer to these 

three cases as ‘Berry 3D’, ‘Berry 2D’, and ‘Berry 1D’, 

respectively.

The �rst optimisation target was the function utility_

rotate in the module utility.F90, which calculates a 

matrix product of the form B = R†AR using Fortran’s built-

in matmul function. The new routine utility_rotate_

new uses instead BLAS and performs about 5.7 times better 

than the original one, giving a total speedup for berry_main 

of about 55%.

A second performance-critical section of code was iden-

ti�ed in the routine get_imfgh_k_list, which took 

more than 50% of the total run-time of berry_main. This 
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Figure 6. (a) Intrinsic spin Hall conductivity σ
spin,z
xy  of fcc Pt, 

plotted as a function of the shift in Fermi energy relative to its 

self-consistent value. (b) Band structure of fcc Pt, colour-coded 

by a dimensionless function r(Ωspin,z
nk,xy ) of the spin Berry curvature 

(equation (57b)). The function r(x) is equal to x/10 when |x| < 10, 
and to log10(|x|)sgn(x) when |x| � 10.

Table 1. Wall-time for some of the runs performed with the Berry 
module, before (Wannier90 v2.0) and after (Wannier90 v3.0) 
the optimisations, for the test system described in the main text. Nc 
indicates the number of cores used in the calculation.

Mode k-grid Nc Time (s)

version 3.0

Berry 3D 30 × 30 × 30 24 6903

30 × 30 × 30 48 3527

30 × 30 × 30 480 441

100 × 100 × 100 480 13 041

100 × 100 × 100 7680 957

Berry 2D 100 × 100 24 1389

Berry 1D 10 000 24 12 639

version 2.0

Berry 3D 30 × 30 × 30 24 56 497

30 × 30 × 30 48 40 279
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routine computes three quantities: Fαβ, Gαβ and Hαβ, which 

are de�ned in equations (51), (66) and (56) of [79]. By some 

algebraic transformations, it was possible to reduce 25 calls to 

matmul, carried out in the innermost runtime-critical loop, 

to only 5 calls. After replacement of matmul with the cor-

responding function from BLAS, the speed up of this routine 

exceeds a factor of 11, and the total time spent in berry_

main is 2.5 times shorter (including the speed-up from the 

�rst optimisation).

In the third step, a bottleneck was eliminated in the ini-

tialisation phase, where mpi_bcast was waiting more than 

two minutes for the master rank to broadcast the parameters. 

The majority of this time was spent in loops computing matrix 

products of the form S = (V1)
†S0V2. Again, we replaced this 

with two calls to the BLAS gemm routine. This resulted 

in a speed-up of a factor of 610 for the calculation of this 

matrix product in our test case, and the total initialisation time 

dropped to less than 15 seconds. In total, the berry_main 

routine runs about 5 times faster than it did originally.

Finally, the routines kslice.F90 and kpath.F90 were 

parallelised. The scalability results of berry_main, 

kslice.F90 and kpath.F90 are presented in �gure  7, and 

a comparison with the scalability of the previous version of 

berry_main is also given. Absolute times for some of the 

calcul ations are reported in table 1.

5.5. GW bands interpolation

While density-functional theory (DFT) is the method of choice 

for most applications in materials modelling, it is well known 

that DFT is not meant to provide spectral properties such as 

band structures, band gaps and optical spectra. Green’s func-

tion formulation of many-body perturbation theory (MBPT) 

[90] overcomes this limitation, and allows the excitation spec-

trum to be obtained from the knowledge of the Green’s func-

tion. Within MBPT the interacting electronic Green’s function 

G(r, r′,ω) may be expressed in terms of the non-interacting 

Green’s function G0(r, r′,ω) and the so-called self-energy 

Σ(r, r′,ω), where several accurate approximations for Σ have 

been developed and implemented into �rst-principles codes 

[91]. While maximally-localised Wannier functions for self-

consistent GW quasiparticles have been discussed in [92], 

here we focus on the protocol to perform bands interpolation 

at the one-shot G0W0 level. For solids, the G0W0 approx-

imation has proven to be an excellent compromise between 

accuracy and computational cost and it has become the most 

popular MBPT technique in computational materials science 

[93]. In the standard one-shot G0W0 approach, Σ is written 

in terms of the Kohn–Sham (KS) Green’s function and the 

RPA dielectric matrix, both obtained from the knowledge of 

DFT-KS orbitals and eigenenergies. Quasi-particle (QP) ener-

gies are obtained from:

ǫQP
nk = ǫnk + Znk〈ψnk|Σ(ǫnk)− Vxc|ψnk〉, (58)

where ψnk and ǫnk are the KS orbitals and eigenenergies, Znk 

is the so-called renormalisation factor and Vxc is the DFT 

exchange-correlation potential. In addition, in the standard 

G0W0 approximation the QP orbitals are approximated by the 

KS orbitals. At variance with DFT, QP corrections for a given 

k-point require knowledge of the KS orbitals and eigenener-

gies at all points (k + q) in reciprocal space. In practice, codes 

such as Yambo [94] compute QP corrections on a regular grid 

and rely on interpolation schemes to obtain the full band 

structure along high-symmetry lines. Wannier90 supports 

the use of G0W0 QP corrections through the general interface 

gw2wannier90.py distributed with Wannier90, while 

dedicated tools for Quantum ESPRESSO and Yambo allow 

for an ef�cient use of symmetries. Thanks to the software 

interface, QP corrections can be computed in the irreducible 

BZ (IBZ) and later unfolded to the full BZ to comply with 

Wannier90 requirements. In addition, the interface facilitates 

the use of a denser k-point grid to converge the self-energy and 

of a coarser grid to obtain MLWFs, as long as the two grids are 

commensurate. This is particularly ef�cient in the case of two-

dimensional materials, where the k-point convergence of the 

self-energy is typically very slow while Wannier interpolation 

is already accurate with much coarser k-point grids. Finally, 

24 48 96 12
0

24
0

48
0

96
0

19
20

38
40

76
80

Number of cores (Nc)

0

20

40

60

80

100

120

140

S
p
ee

d
-u

p
(v

3
.0

w
.r

.t
.

v
2
.0

)
Berry 3D

24 48 96 12
0

24
0

48
0

96
0

19
20

38
40

76
80

Number of cores (Nc)

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

N
o
rm

a
li
se

d
C

P
U

ti
m

e Berry 3D

Berry 2D

Berry 1D

Figure 7. (Top) Speedup of the new Wannier90 v3.0 with respect 
to v2.0, for a run of the berry module (mode ‘Berry 3D’) on the 
test system described in the text, demonstrating the improvements 
implemented in the new version of the code. (Bottom) Total CPU 
time (de�ned as total walltime times number of CPUs) for the three 
cases ‘Berry 3D’, ‘Berry 2D’ and ‘Berry 1D’ (whose meaning is 
described in the main text), normalised with respect to the same 
case run with Ncpu = 24, for the Wannier90 v3.0 code. The 
‘Berry 1D’ and ‘Berry 2D’ tests scan a 1D or 2D grid of points 
in the BZ, respectively; for these tests, the total number of grid 
points is 10 000, therefore they can scale only up to a few hundreds 
of cores, above which the communication cost overweights the 
advantage coming from parallelisation. Instead, we emphasise that 
calculations with Ncpu � 480 for ‘Berry 3D’ were run on a denser 
grid (100 × 100 × 100 rather than 30 × 30 × 30) and values have 
been rescaled using the time measured for both grids at Ncpu = 480 
to show the scalability of the code on thousands of CPUs.
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the interface takes care of correcting and possibly reordering 

in energy both the KS eigenvalues and the corresponding 

input matrices (like M
(k,b)
mn , Amnk). After reading these eigen-

values and matrices, Wannier90 can proceed as usual and all 

functionalities are available (band-structure interpolation and 

beyond) at the level of G0W0 calculations.

6. Automatic Wannier functions: the SCDM method

An alternative method for generating localised Wannier func-

tions, known as the selected columns of the density matrix 

(SCDM) algorithm, has been proposed by Damle, Lin and Ying 

[95, 96]. At its core the scheme exploits the information stored 

in the real-space representation of the single-particle density 

matrix, a gauge-invariant quantity. Localisation of the resulting 

functions is a direct consequence of the well-known nearsight-

edness principle [97, 98] of electronic structure in extended 

systems with a gapped Hamiltonian, i.e. insulators and semi-

conductors. In these cases, the density matrix is exponentially 

localised along the off-diagonal direction in its real-space repre-

sentation ρ(r, r′) and it is generally accepted that Wannier func-

tions with an exponential decay also exist; numerical studies 

have con�rmed this claim for a number of materials, and there 

exist formal proofs for multiband time-reversal-invariant insu-

lators [99–101]. Since the SCDM method does not minimise a 

given gauge-dependent localisation measure via a minimisation 

procedure, it is free from any issue regarding the dependence 

on initial conditions, i.e. it does not require a good initial guess 

of localised orbitals. It also avoids other problems associated 

with a minimisation procedure, such as getting stuck in local 

minima. More generally, the localised Wannier functions pro-

vided by the SCDM method can be used as starting points for 

the MLWF minimisation procedure, by using them to generate 

the Ak projection matrices needed by Wannier90.

For extended insulating systems, the density matrix is 

given by

ρ =
∑

k

Pk =

J
∑

n=1

∑

k

|ψnk〉〈ψnk|. (59)

As shown in section 2, the Pk are the spectral projectors associ-

ated with the crystal Hamiltonian operator Hk  onto the valence 

space Sk, hence their rank is J. Moreover, they are analytic 

functions of k and also manifestly gauge invariant [102, 103]. 

As mentioned above, the nearsightedness principle [98] guar-

antees that the columns of the kernels Pk(r, r′) = 〈r|Pk|r
′〉 

are localised along the off-diagonal direction and therefore 

they may be used to construct a localised basis. If we consider 

a discretisation of the J Bloch states at each k on a real-space 

grid of Ng points, we can arrange the wavefunctions into the 

columns of a unitary Ng × J k-dependent matrix Ψk

Ψk =







ψ1k(r1) . . . ψJk(r1)
...

. . .
...

ψ1k(rNg
) . . . ψJk(rNg

)






, (60)

such that Pk,ij =
(

ΨkΨ
†
k

)

ij  is a Ng×Ng matrix. In this rep-

resentation, it is straightforward to see that the columns of 

Pk(ri, rj) are projections of extremely localised functions (i.e. 

Dirac-delta functions localised on the grid points) onto the 

valence eigenspace. As a result, selecting any linearly-inde-

pendent subset of J of them will yield a localised basis for the 

span of P(r, r′). However, randomly selecting J columns does 

not guarantee that a well-conditioned basis will be obtained. 

For instance, there could be too much overlap between the 

selected columns. Conceptually, the most well conditioned 

columns may be found via a QR factorisation with column 

pivoting (QRCP) applied to P(r, r′), in the form PΠ = QR, 

with Π being a matrix permuting the columns of P, Q a unitary 

matrix and R an upper-triangular matrix (not to be confused 

with the lattice vector R , or with the matrix R(k,b) de�ned in 

equation (12), or with the shift vector of equation (51)), and 

where Π is chosen so that |R11| � |R22| � · · · � |Rnn|. Then 

the J columns forming a localised basis set are chosen to be 

the �rst J of the matrix with permuted columns PΠ.

The SCDM-k [96] method suggests that it is suf�cient to 

apply the QRCP factorisation at k = 0 (Γ point) only, and use 

the same selection of columns at all k-points. However, this is 

still often impractical since PΓ is prohibitively expensive to 

construct and store in memory. Therefore an alternative proce-

dure is proposed, for which the columns can be computed via 

the QRCP of the (smaller) matrix Ψ†
Γ

 instead:

Ψ†
Γ
Π = Q′R′, (61)

i.e. the same Π matrix is obtained by computing a QRCP 

on Ψ† only. Once the set of columns has been obtained, we 

need to impose the orthonormality constraint on the chosen 

columns without destroying their locality in real space. This 

can be achieved by a Löwdin orthogonalisation, similarly to 

equation  (26). In particular, the selection of columns of ΨΓ 

can be used to select the columns of all Ψk, which in turn 

de�ne the Amnk matrices needed as input by Wannier90 

to start the MLWF minimisation procedure, by de�ning 

Amnk = ψ∗

mk(rΠ(n)), where the Π(n) is the index of the nth 

column of P after permutation with Π. In fact, we can write 

the nth column of P after permutation, Pk(r, rΠ(n)), as

Pk(r, rΠ(n)) =

J
∑

m=1

ψmk(r)ψ
∗

mk(rΠ(n)) (62)

= φnk(r)(�r) ≡

J
∑

m=1

ψmk(r)Amnk. (63)

The unitary matrix Uk  sought for is then constructed via 

Löwdin orthogonalisation

Uk = Ak(A
†
kAk)

− 1
2 = AkS

− 1
2

k . (64)

We can also extend the SCDM-k method to the case where the 

Bloch states are represented as two-component spinor wave-

functions ψαnk(r), e.g. when including spin–orbit interaction 
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in the Hamiltonian. Here, α =↑, ↓ is the spinor index. In this 

case, we include the spin index as well as the position index to 

perform QRCP. First, we de�ne the 2Ng × J  matrix Ψk

Ψk =



















ψ
↑
1k(r1) . . . ψ

↑
Jk(r1)

ψ
↓
1k(r1) . . . ψ

↓
Jk(r1)

...
. . .

...

ψ
↑
1k(rNg

) . . . ψ
↑
Jk(rNg

)

ψ
↓
1k(rNg

) . . . ψ
↓
Jk(rNg

)



















. (65)

Next, as in the spinless case, the QRCP of Ψ
†
Γ

 is computed, 

and the �rst J columns of the Π matrix are selected. Now, 

Π(n), the index of the nth column of P after permutation 

with Π, determines both the position index rΠ(n) and the spin 

index αΠ(n). We de�ne A
mn�k

= [ψ
αΠ(n)

m�k
(�rΠ(n))]

∗ and perform 

Löwdin orthogonalisation to obtain the unitary matrix Uk .

In the case of entangled bands, we need to introduce a so-

called quasi-density matrix de�ned as

Pk =

∑

n

|ψnk〉f (ǫnk)〈ψnk|, (66)

where f (ǫnk) ∈ [0, 1] is a generalisation of the Fermi–Dirac 

probability for the occupied states. Also in this case we only 

use the information at Γ to generate the permutation matrix. 

Depending on what kind of entangled manifold one is inter-

ested in, f (ǫ) can be modelled with various functional forms. 

In particular, the authors of [96] suggest the following three 

forms:

 1.  Isolated manifold, e.g. the valence bands of an insulator 

or a semiconductor: f (ǫ) is a step function, with the 

step inside the energy gap ∆ǫg = ǫc − ǫv, where ǫc(v) 

represents the minimum (maximum) of the conduction 

(valence) band:

f (ǫ) = θ(ǫv +∆ǫg/2 − ǫ). (67)

  Both ∆ǫg and ǫv are not free parameters, as they may be 

obtained directly from the ab initio calculation.

 2.  Entangled manifold (case I), e.g. the valence bands and 

low-lying conduction bands in a semiconductor: f (ǫ) is a 

complementary error function:

f (ǫ) =
1

2
erfc

(

ǫ− µ

σ

)

, (68)

  where µ is used to shift the mid-value of the complemen-

tary error function, so that states with energy equal to µ 

have a weight of f (µ) = 1/2. The parameter σ is used to 

gauge the ‘broadness’ of the distribution function.

 3.  Entangled manifold (case II), e.g. the d bands in a trans-

ition metal: f (ǫ) is a Gaussian function

f (ǫ) = exp

(

−

(ǫ− µ)2

σ2

)

. (69)

The procedure then follows as in the previous case, by com-

puting a QRCP factorisation on the quasi-density matrix. It is 

worth to note that in the case of an entangled manifold, the 

SCDM method requires the selection of two real numbers: µ 

and σ, as well as the number of Wannier functions to disen-

tangle J. These parameters play a crucial role in the selection 

of the columns of the density matrix. While the selection of 

these parameters requires some care, as a rule of thumb (e.g. 

in entangled case I) σ is of the order 2–5 eV (which is the 

energy range of a typical bandwidth), while µ can often be 

set around the Fermi energy (but the exact value depends on 

various factors, including the number J of bands chosen and 

the speci�c properties of the bands of interest). It is worth to 

mention that since the SCDM-k method is employed as an 

alternative way of specifying a set of initial projections and 

hence to compute the Ak matrices in equation (26), the dis-

entanglement procedure can be used in exactly the same way 

as described in section 2.2. However, in the case of entangled 

bands the column selection is done on a quasi-density matrix, 

which implicitly de�nes a working subspace larger than the 

target subspace of dimension J. We �nd that for well-known 

systems SCDM-k is typically already capable of selecting a 

smooth manifold and no further subspace selection is needed.

This method is now implemented as part of the 

pw2wannier90.x interface code to Quantum ESPRESSO. 

We have decided to implement the algorithm in the interface 

code(s) rather than in Wannier90 itself, because the SCDM 

method requires knowledge of the wavefunctions ψnk, which 

are only available in the ab initio code.

In Wannier90 only a single new input parameter 

auto_projections is required. This disables the check 

on the number of projections speci�ed in the input �le (as 

we rely on SCDM to provide us with the initial guesses) and 

adds a new entry to the   <  seedname  >  .nnkp �le (which 

is read by pw2wannier90.x in order to compute the quanti-

ties required by Wannier90) that speci�es the number of 

Wannier functions required. The remaining control param-

eters for the SCDM method are speci�ed in the input �le 

for the pw2wannier90.x code, including whether to use the 

SCDM method, the functional form of the f (ǫ) function in 

equation  (66) and, optionally, the values of µ and σ in the 

de�nition of f (ǫ).

7. Automation and work�ows: AiiDA− WANNIER90 

plugin

AiiDA [13] (Automated Interactive Infrastructure and 

Database for Computational Science) is an informatics infra-

structure that helps researchers in managing, automating, 

storing and sharing their computations and results. AiiDA 

automatically tracks the entire provenance of every calcul-

ation to ensure full reproducibility, which is also stored in a 

tailored database for ef�cient querying of previous results. 

Moreover, it provides a work�ow engine, allowing researchers 

to implement high-level work�ows to automate sequences of 

tedious or complex calculation steps. AiiDA supports simula-

tion codes via a plugin interface, and over 30 different plugins 

are available to date [104].

Among these, the AiiDA − Wannier90 plugin provides 

support for the Wannier90 code. Users interact with the code 
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(to submit calculations and retrieve the results) via the high-

level python interface provided by AiiDA rather than directly 

creating the Wannier90 input �les. AiiDA will then handle 

automatically the various steps involved in submitting calcul-

ations to a cluster computer, retrieving and storing the results, 

and parsing them into a database. Furthermore, using the 

AiiDA work�ow system users can chain pre-processing and 

post-processing calculations automatically (e.g. the prelimi-

nary electronic structure calculation with an ab initio code). 

These scienti�c work�ows, moreover, can encode in a repro-

ducible form the scienti�c knowledge of expert computational 

researchers in the �eld on how to run the simulations, choose 

the numerical parameters and recover from potential errors. 

In turn, their availability reduces the training time of new 

researchers, eliminates sources of error and enables large-

scale high-throughput simulations.

The AiiDA − Wannier90 plugin expects that each 

calcul ation takes a few well-de�ned input parameters. Among 

the most important ones, a Wannier90 calculation run via 

AiiDA requires that the following input nodes are provided: 

an input crystal structure, a node of parameters with 

a dictionary of input �ags for Wannier90, a node with the  

list of kpoints, a node representing the atomic projec-

tions, and a local_input_folder or remote_

input_folder node containing the necessary input �les 

(.amn, .mmn, .nnkp, .eig, .dmn) for the Wannier90 

calculation as generated by an ab initio code.

All of these parameters, with the exception of projections, 

are generic to AiiDA to facilitate their reuse with different 

simulation codes. More detailed information on all inputs can 

be found in the AiiDA − Wannier90 package documenta-

tion [105].

After the Wannier90 execution is completed, the 

AiiDA − Wannier90 plugin provides parsers that are able 

to detect whether the convergence was successful and retrieve 

key parameters including the centres of the Wannier functions 

and their spread, as well as the different components of the 

spread (ΩI, ΩD, ΩOD and Ω), and (if computed) the maximum 

imaginary/real ratio of the Wannier functions and the interpo-

lated band structure.

The whole simulation is stored in the form of a graph, 

representing explicitly the provenance of the data gener-

ated including all inputs and outputs of the codes used in the 

work�ow. An example of a provenance graph, automatically 

generated by AiiDA when running a Quantum ESPRESSO 

calculation followed by a Wannier90 calculation, is shown 

in �gure 8.

To demonstrate the usefulness of this approach, we refer to 

[106] that reports the implementation and veri�cation results 

of a fully-automated work�ow (implemented within AiiDA, 

using the AiiDA − Wannier90 plugin described in this sec-

tion) to compute Wannier functions of any material without 

any user input (besides its crystal structure). In addition, a vir-

tual machine containing the codes (AiiDA with its plugins, 

Quantum ESPRESSO and Wannier90 including the SCDM 

implementation described in section  6, and the automation 

work�ows) is distributed. This virtual machine allows any 

researcher to reproduce the results of the paper and, even 

more, to perform simulations on new materials using the same 

protocol, without the need of installing and con�guring all 

codes.

We emphasise that the availability of a platform to run 

Wannier90 in a fully-automated high-throughput way via the 

AiiDA − Wannier90 plugin has already proved to be bene�-

cial for the Wannier90 code itself. Indeed, it has pushed the 

development of additional features or improvements now part 

of Wannier90 v3.0, including additional output �les to facili-

tate output parsing and improvements in some of the algo-

rithms and their default parameters to increase robustness.

8. Modern software engineering practices

In this section, we describe a number of modern software 

engineering practices that are now part of the development 

cycle of the Wannier90 code. In particular, Wannier90 

includes a number of tests that are run at every commit via 

a continuous integration approach, as well as nightly in a 

dedicated test farm. Version control is handled using git and 

the code is hosted on the GitHub platform [107]. We follow 

the fork and pull-request model, in which users can duplicate 

(fork) the project into their own private repository, make their 

own changes, and make a pull request (i.e. request that their 

changes be incorporated back into the main repository). When 

a pull request is made, a series of tests are automatically per-

formed: the test suite is run both in serial and parallel using 

the Travis continuous integration platform [108], and code 

coverage is checked using codecov [109]. If these tests are 

successful then the changes are reviewed by members of the 

Wannier90 developers group and, if the code meets the pub-

lished coding guidelines, it can be merged into the develop-

ment branch.

In addition, while interaction with end users happens via 

a mailing-list forum, discussion among developers is now 

tracked using GitHub issues. This facilitates the maintenance 

of independent conversation threads for each different code 

issue, new feature proposal or bug. These can easily reference 

code lines as well as be referenced in code commit messages. 

Moreover, for every new bug report a new issue is opened, 

and pull requests that close the issue clearly refer to it. This 

approach facilitates tracking back the reasoning behind the 

changes in case a similar problem resurfaces.

In the remainder of this section we describe more in detail 

some of these modern software engineering practices.

8.1. Code documentation (FORD)

The initial release of Wannier90 came with extensive docu-

mentation in the form of a User Guide describing the meth-

odology, input �ags to the program and format of the input 

and output �les. This document was aimed at the end users 

running the software. Documentation of the code itself was 

done via standard code comments. In order to foster not 

only a community of users but also of code contributors to 
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Wannier90, we have now created an additional documenta-

tion of the internal structure of the code. This makes the code 

more approachable, particularly for new contributors. To 

create this code documentation in a fully automated fashion, 

we use the FORD (FORtran Documenter) [110] documenta-

tion generator. We have chosen this over other existing docu-

mentation solutions because of FORD’s speci�c support for 

Fortran. This tool parses the Fortran source, and generates a 

hyperlinked (HTML) index of source �les, modules, proce-

dures, types and programs de�ned in the code. Furthermore, 

it constructs graphs showing the dependencies between dif-

ferent modules and subroutines. Additional information can 

be provided in the form of special in-code comments (marked 

with double exclamation marks) describing in more detail 

variables, modules or subroutines. By tightly coupling the 

code to its documentation using in-code comments, the docu-

mentation maintenance efforts are greatly reduced, decreasing 

the risk of having outdated documentation. The compiled ver-

sion of the documentation for the most recent code version is 

made available on the Wannier90 website [111].

8.2. Testing infrastructure and continuous integration

With the recent opening to the community of the Wannier90 

development, it has become crucial to create a non-regres-

sion test suite to ensure that new developments do not break 

existing functionalities of the code. Its availability facilitates 

the maintenance of the code and ensures its long-term stability.

The Wannier90 test suite relies on a modi�ed version of 

James Spencer’s python testcode.py [112]. This provides 

the functionality to run tests and compare selected quantities 

parsed from the output �les against benchmarked values.

At present, the Wannier90 test suite includes over 50 tests 

which are run both in serial and parallel and cover over 60% 

of the source code (with many modules exceeding 80% cov-

erage). The code coverage is measured with the codecov 

software [109]. Developers are now required to add tests when 

adding new features to the code to ensure that their additions 

work as expected. This also ensures that future changes to the 

code will never break that functionality. Two different test 

approaches are implemented, serving different purposes.

First, the Wannier90 repository is now linked with the 

Travis continuous integration platform [108] to prevent intro-

ducing errors and bugs into the main code branch. Upon any 

commit to the GitHub repository, the test suite is run both 

in serial and in parallel. Any test failure is reported back to 

the GitHub webpage. Additionally, for tests run against pull 

requests, any failed test results in the pull request being 

blocked and not permitted to merge. Contributors will �rst 

need to change their code to �x the problems highlighted in 

the tests; pull requests are able to be merged only after all tests 

pass successfully.

Figure 8. The provenance graph automatically generated by AiiDA when running a Wannier90 calculation for a diamond crystal using 
Quantum ESPRESSO as the DFT code. Rectangles represent executions of calculations, ellipses represent data nodes, and diamonds 
are code executables. Graph edges connect calculations to their inputs and outputs. In particular, the following calculations are visible: 
Quantum ESPRESSO pw.x SCF (dark blue) and NSCF (green), Quantum ESPRESSO pw2wannier90.x (brown), and Wannier90 pre-
processing (yellow) and minimisation run (purple). The initial diamond structure (light blue) and the �nal interpolated band structure (dark 
grey) are also highlighted.
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Second, nightly automatic tests are run on a Buildbot test 

farm. The test farm compiles and runs the code with a com-

bination of compilers and libraries (current compilers include 

GFortran v6.4.0 and v7.3.0, Intel Fortran Compiler v17 and 

v18, and PGI compiler v18.05; current MPI libraries include 

Open MPI v1.10.7 and v3.1.3, Intel MPI v17 and MVAPICH 

v2.3b). This ensures that the code runs correctly on various 

high-performance computer (HPC) architectures. More infor-

mation on the test farm can be found on the Wannier90 

GitHub wiki website [113].

In addition to these tests, we have implemented git pre-

commit hooks to help keep the same code style in all source 

�les. The current pre-commit hooks run Patrick Seewald’s 

Fortran source code formatter fprettify [114] to remove 

trailing whitespaces at the end of a line and to enforce 

a consistent indentation style. These precommit hooks, 

besides validating the code, can reformat it automatically. 

Developers may simply run the formatter code to convert 

the source to a valid format. If a developer installs the pre-

commit hooks, these will be run automatically before every 

commit. Even if this is not the case, these tests are also run 

on Travis; therefore, a pull request that does not conform to 

the standard code style cannot be merged before the style is 

�xed.

8.3. Command-line interface and dry-run

The command-line interface of the code has been improved. 

Just running wannier90.x without parameters shows a short 

explanation of the available command line options. In addi-

tion, a -v �ag has been added to print the version of the code, 

as well as a new -d dry-run mode, that just parses the input 

�le to perform all needed checks of the inputs without running 

the actual calculation. The latter functionality is particularly 

useful to be used in input validators for Wannier90 or to pre-

calculate quantities computed by the code at the beginning of 

the simulation (such as nearest-neighbour shells, b-vectors or 

expected memory usage) and use this information to validate 

the run or optimise it (e.g. to decide the parallelisation strategy 

within automated AiiDA work�ows).

8.4. Library mode

Wannier90 also comes with a library mode, where the core 

code functionality can be compiled into a library that can 

then be linked by external programs. This library mode is 

used as the default interaction protocol by some interface 

codes. The library mode provides only support for a subset 

of the full functionality, in particular at the moment it only 

supports serial execution. We have now added and improved 

support for the use of excluded bands also within the library 

mode. Moreover, beside supporting the generation of a stat-

ically-linked library, we now also support the generation of 

dynamically-linked versions. Finally, we have added a min-

imal test code, run together with all other tests in the test 

suite, that serves both to verify that the library functionality 

works as expected, and as an example of the interface of the 

library mode.

9. Conclusions and outlook

Wannier90 v2.0 was released in October 2013 with a small 

update for v2.1 in January 2017. The results and develop-

ments of the past years, presented in this work, were released 

in Wannier90 v3.0 in February 2019. Thanks to the transition 

of Wannier90 to a community code, Wannier90 includes 

now a large number of new functionalities and improvements 

that make it very robust, ef�cient and rich with features. These 

include the implementation of new methods for the calcul-

ation of WFs and for the generation of the initial projections; 

parallelisation and optimisations; interfaces with new codes, 

methods and infrastructures; new user functionality; improved 

documentation; and various bug �xes. The effect of enlarging 

the community of developers is not only visible in the large 

number of contributions to the code, but also in the modern 

software engineering practices that we have put in place, that 

help improve the robustness and reliability of the code and 

facilitate its maintenance by the core Wannier90 developers 

group and its long-term sustainability.

The next major improvement that we are planning is the 

implementation of a more robust and general library mode. 

The features that we envision are: (1) the possibility to call 

the code from C or Fortran codes without the need to store 

�les but by passing all variables from memory; (2) a more 

general library interface that is easily extensible in the future 

when new functionality is added; and (3) the possibility to run 

Wannier90 from a parallel MPI code, both by running each 

instance in parallel and by allowing massively-parallel codes 

to call, in parallel, various instances of Wannier90 on various 

structures or with different parameters. This improvement will 

demand a signi�cant restructuring of most of the codebase 

and requires a good design of the new interface. Currently we 

are drafting the new library interface, by collecting feedback 

and use cases from the various contributors and users of the 

code, to ensure that the new library mode can be bene�cial to 

all different possible use cases.
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