000872879 001__ 872879
000872879 005__ 20240712112911.0
000872879 0247_ $$2doi$$a10.1016/j.apenergy.2020.115223
000872879 0247_ $$2ISSN$$a0306-2619
000872879 0247_ $$2ISSN$$a1872-9118
000872879 0247_ $$2Handle$$a2128/25854
000872879 0247_ $$2altmetric$$aaltmetric:85410765
000872879 0247_ $$2WOS$$aWOS:000565604700001
000872879 037__ $$aFZJ-2020-00344
000872879 082__ $$a600
000872879 1001_ $$0P:(DE-HGF)0$$aTeichgraeber, Holger$$b0$$eCorresponding author
000872879 245__ $$aExtreme Events as Part of Time Series Aggregation: A Case Study for the Optimization of Residential Energy Supply Systems
000872879 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000872879 3367_ $$2DRIVER$$aarticle
000872879 3367_ $$2DataCite$$aOutput Types/Journal article
000872879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602175942_26767
000872879 3367_ $$2BibTeX$$aARTICLE
000872879 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872879 3367_ $$00$$2EndNote$$aJournal Article
000872879 520__ $$aTo account for volatile renewable energy supply, energy systems optimization problems require high temporal resolution. Many models use time-series clustering to find representative periods to reduce the amount of time-series input data and make the optimization problem computationally tractable. However, clustering methods remove peaks and other extreme events, which are important to achieve robust system designs. This work addresses the challenge of including extreme events. We present a general decision framework to include extreme events in a set of representative periods. We introduce a method to find extreme periods based on the slack variables of the optimization problem itself. Our method is evaluated and benchmarked with other extreme period inclusion methods from the literature for a design and operations optimization problem: a residential energy supply system. Our method ensures feasibility over the full input data of the residential energy supply system although the design optimization is performed on the reduced data set.We show that using extreme periods as part of representative periods improves the accuracy of the optimization results by 3% to more than 75% depending on system constraints compared to results with clustering only, and thus reduces system cost and enhances system reliability.
000872879 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000872879 588__ $$aDataset connected to CrossRef
000872879 7001_ $$0P:(DE-HGF)0$$aLindenmeyer, Constantin P.$$b1
000872879 7001_ $$0P:(DE-HGF)0$$aBaumgärtner, Nils$$b2
000872879 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b3$$ufzj
000872879 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000872879 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b5$$ufzj
000872879 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b6$$ufzj
000872879 7001_ $$0P:(DE-HGF)0$$aBrandt, Adam R.$$b7
000872879 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.apenergy.2020.115223$$gVol. 275, p. 115223 -$$p115223 -$$tApplied energy$$v275$$x0360-5442$$y2020
000872879 8564_ $$uhttps://juser.fz-juelich.de/record/872879/files/Teichgr%C3%A4ber%20_H._APEN_arXiv.pdf$$yOpenAccess
000872879 8564_ $$uhttps://juser.fz-juelich.de/record/872879/files/Teichgr%C3%A4ber%20_H._APEN_arXiv.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872879 909CO $$ooai:juser.fz-juelich.de:872879$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b3$$kFZJ
000872879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000872879 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000872879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b5$$kFZJ
000872879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b6$$kFZJ
000872879 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b6$$kRWTH
000872879 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000872879 9141_ $$y2020
000872879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872879 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872879 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2017
000872879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872879 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872879 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872879 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872879 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872879 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872879 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000872879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872879 920__ $$lyes
000872879 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000872879 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x1
000872879 9801_ $$aFullTexts
000872879 980__ $$ajournal
000872879 980__ $$aVDB
000872879 980__ $$aUNRESTRICTED
000872879 980__ $$aI:(DE-Juel1)IEK-3-20101013
000872879 980__ $$aI:(DE-Juel1)IEK-10-20170217
000872879 981__ $$aI:(DE-Juel1)ICE-2-20101013
000872879 981__ $$aI:(DE-Juel1)ICE-1-20170217
000872879 981__ $$aI:(DE-Juel1)ICE-1-20170217