001     872879
005     20240712112911.0
024 7 _ |a 10.1016/j.apenergy.2020.115223
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a 2128/25854
|2 Handle
024 7 _ |a altmetric:85410765
|2 altmetric
024 7 _ |a WOS:000565604700001
|2 WOS
037 _ _ |a FZJ-2020-00344
082 _ _ |a 600
100 1 _ |a Teichgraeber, Holger
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Extreme Events as Part of Time Series Aggregation: A Case Study for the Optimization of Residential Energy Supply Systems
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602175942_26767
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To account for volatile renewable energy supply, energy systems optimization problems require high temporal resolution. Many models use time-series clustering to find representative periods to reduce the amount of time-series input data and make the optimization problem computationally tractable. However, clustering methods remove peaks and other extreme events, which are important to achieve robust system designs. This work addresses the challenge of including extreme events. We present a general decision framework to include extreme events in a set of representative periods. We introduce a method to find extreme periods based on the slack variables of the optimization problem itself. Our method is evaluated and benchmarked with other extreme period inclusion methods from the literature for a design and operations optimization problem: a residential energy supply system. Our method ensures feasibility over the full input data of the residential energy supply system although the design optimization is performed on the reduced data set.We show that using extreme periods as part of representative periods improves the accuracy of the optimization results by 3% to more than 75% depending on system constraints compared to results with clustering only, and thus reduces system cost and enhances system reliability.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lindenmeyer, Constantin P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baumgärtner, Nils
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kotzur, Leander
|0 P:(DE-Juel1)168451
|b 3
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
|u fzj
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 5
|u fzj
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 6
|u fzj
700 1 _ |a Brandt, Adam R.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1016/j.apenergy.2020.115223
|g Vol. 275, p. 115223 -
|0 PERI:(DE-600)2019804-8
|p 115223 -
|t Applied energy
|v 275
|y 2020
|x 0360-5442
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/872879/files/Teichgr%C3%A4ber%20_H._APEN_arXiv.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/872879/files/Teichgr%C3%A4ber%20_H._APEN_arXiv.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872879
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)168451
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)ICE-1-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21