

HPC SYSTEMS IN THE NEXT DECADE - WHAT TO EXPECT, WHEN, WHERE

Dirk Pleiter | CHEP 2019, Adelaide | 06.11.2019

Disclaimer

- Long-term technology trends provide guidance
- Budget constraints can change
- (Non-HPC) Market trends are of critical importance and can change

Outline

- Introduction
- Exascale hardware technologies
- Exascale programming
- Future HPC infrastructures
- Summary and conclusions

INTRODUCTION

What Is Exascale Computing?

Introduction

• Top500 continues to be important metric for governments and funding agencies

Answer 2: HPC infrastructure allow to address new science and engineering challenges providing 10-100x more performance compared to today's systems

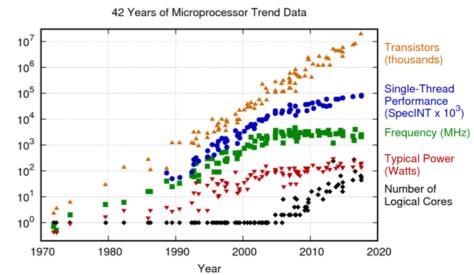
- Focus on purpose of supercomputers: enable science and engineering
- No performance metric fits all
- Monolithic supercomputers may in the future become less relevant

Canonical Exascale Computing Challenges

Reducing power requirements

Few sites can afford >10-15 MW

Exploiting massive parallelism


- More computational performance
 - → more parallelism
 - → scalability challenge

Maintaining a balanced system

- Improved data transport capabilities
- Flops are cheap, but data transport is expensive

Coping with run-time errors

More components → higher risk of system failures

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batter New plot and data collected for 2010-2017 by K. Rupp

Exascale Science Cases

E. Lindahl, S. Ryan et al., "The Scientific Case for Computing in Europe 2018-2026", October 2018

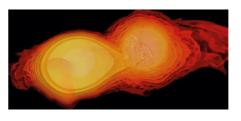
Fundamental sciences

- Astrophysics, cosmology
- Particle physics

Climate, weather and earth sciences

- Understanding and Predicting a Changing Climate
- Accurate Weather Forecasting and Meteorology

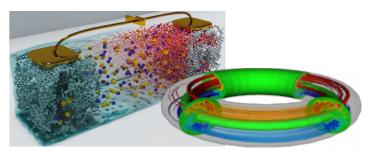
Materials science and energy research


Material properties from atomic and electronic structure simulations

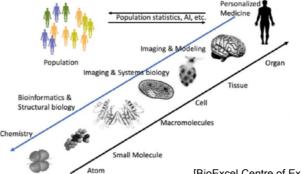
06.11.2019

Improving lower-CO2-impact energy source

Life sciences and health


- Molecular life science and structural biology
- Neuroscience

[Luciano Rezzolla]


5 Oct Hurricane, 925hPa q, Winds coloured by Temperature [Luigi Vidale/University of Reading]

[Mathieu Salanne, EPFL]

[J. Bigot et al., CEA]

Exascale Programs

US

- 3 exascale systems through CORAL2 procurement
- ECP project: application development, software technology, integration

Japan

- 1 exascale system at RIKEN
- Application-driven co-design of hardware

Europe

- 2 exascale systems through Joint Undertaking EuroHPC
- Research and innovation program, Centres of Excellence

China

- Details on exascale system deployments less clear
- Research program addressing development of applications and HPC environment

Exascale Systems Planning

EXASCALE HARDWARE TECHNOLOGIES

Diversifying Landscape of CPUs for HPC

Intel Xeon

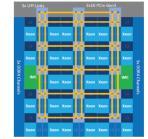
- High compute capabilities, relatively low memory bandwidth
- Dominating market position

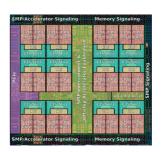
AMD EPYC

- High compute capabilities, slightly better memory bandwidth
- Emerging market position

IBM POWER9

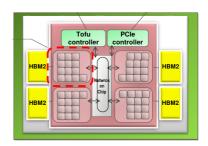
- Low compute capabilities, relatively good data transport capabilities
- Used for current Top500 #1 and #2, lacking HPC market uptake

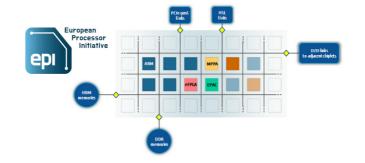

Marvell ThunderX2


- Moderate compute capabilities, relatively good memory bandwith
- Still low overall market uptake

Fujitsu A64FX

- High compute capability and memory bandwidth
- Used for Japan's exascale system


Upcoming: European Processor Initiative

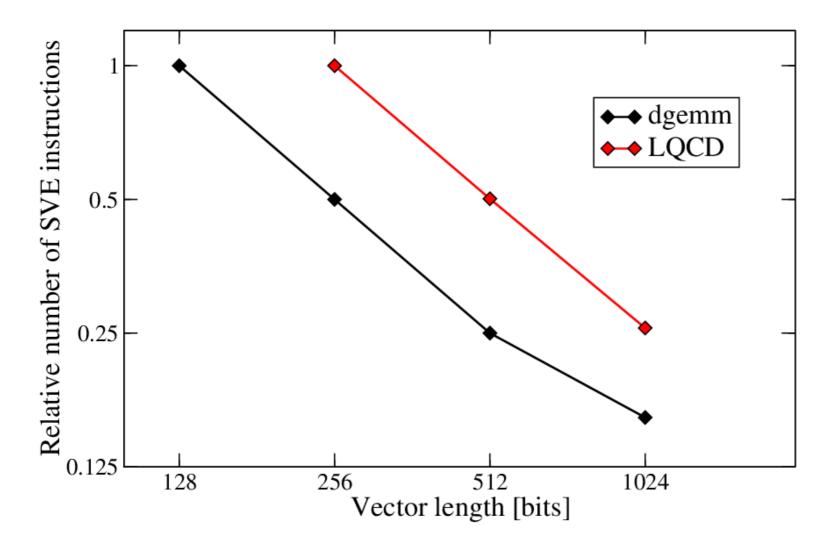


CPU: Core vs. Vector Parallelism

Strategies for increasing CPU-level parallelism of floating-point operations

- Increase number of cores
- Increase width of SIMD/vector instruction

	Increase core count	Increased SIMD/vector width
Pro	More flexible thread-parallelism	Simplified hardware architecture
Con	Replication of instruction front-end	Increased power-consumption per node; Vector/SIMD parallelism more difficult to exploit


→ Need for trade-off decisions

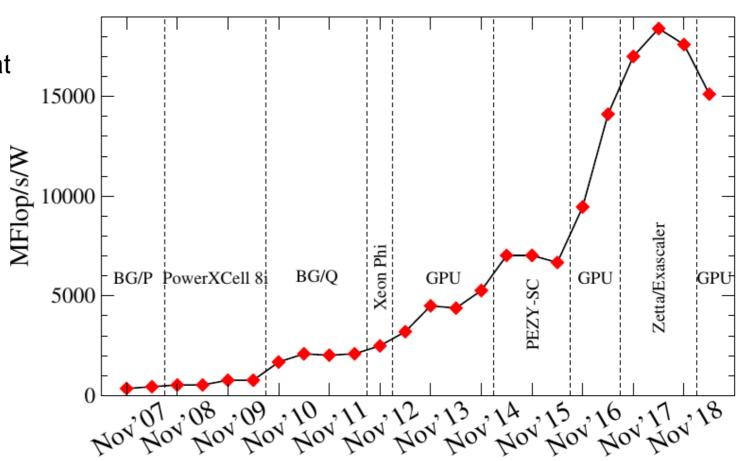
New vector ISA: Arm Scalable Vector Extension (SVE)

• Vector length agnostic → multiple lengths supported by ISA: 128, 256, ..., 2048 bit

Exploring Arm's Scalable Vector Extension

Change of number of SVE instructions as a function of the vector length

Power Efficiency: State of Affair

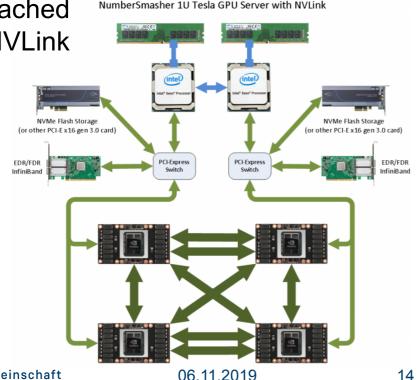

Exascale targets

US labs: 30 MWatt → 33 GFlop/s/Wat

Green500 list (June 2019)

- #1: 15 GFlop/s/Watt
- Best Xeon-based system at #27:6 GFlop/s/Watt

→ Use of compute accelerators unavoidable



Compute Accelerators for HPC: Today and Near Future

Today: NVIDIA GPUs

- Group of 3-4 Tesla GPUs interconnected via **NVLink**
 - Up to ~20 TFlop/s per group

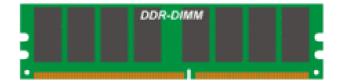
 1-2 CPUs attached via PCle or NVLink

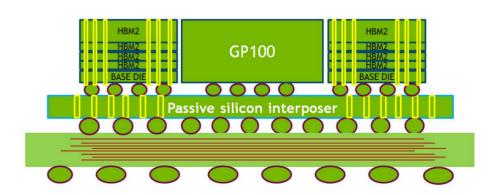
Future competitors: AMD and Intel GPUs

- Intel Xe GPU set for Aurora at ANL
- AMD GPUs set for Frontier at ORNL and El Capitan at LLNL
 - Similar integration approach as for NVIDIA today

Common future trend:

Improve integration of discrete accelerator and CPU through coherent I/O interfaces


Memory Technologies (1/2)


Desirable memory performance features

- Large memory capacity C_{mem}
- High memory bandwidth B_{mem}

Main types of memory

- DDRx
 - DDR4: Up to ~200 GByte/s per CPU using 8 channels
 - DDR5: Aims on doubling performance
 - Capacity of O(100) GiByte
- High-Bandwidth Memory (HBM)
 - Today: ~250 GByte/s per stack
 - Near future: ~400 GByte/s per stack
 - Capacity of O(10) GiByte
 - Capacity per stack announced to double
 - More power efficient (lower data rate per line, shorter traces)

Memory Technologies (2/2)

Main types of memory (cont.)

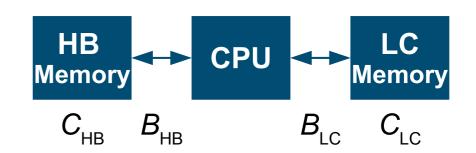
- Non-volatile memory
 - Technologies: NAND Flash, 3D-Xpoint
 - Attachment via I/O interface or memory bus
 - Large variety of software interfaces

Significant differences in technology for $\Delta \tau = C_{\text{mem}} / B_{\text{mem}}$

NVIDIA V100 GPU	HBM2	Δτ ≈ 20-40 ms
JUWELS compute node	DDR4	Δτ ≈ 0.4 s
Intel Optane DC	Memory attached 3D XPoint	$\Delta T = O(35-140s)$
Intel DC P4511 2 TByte	PCIe attached NAND Flash	Δτ ≈ 1300 s

Deeper Memory Hierarchies

Rationale


- High-bandwidth memory tier based on technologies like HBM (maximise performance/€)
- Large-capacity memory tier based on technologies like DDR4/DDR5 or new high-density memory technologies (maximise capacity/€)

Need for hardware parameter trade-off decisions

- Bandwidth and capacity ratio high-bandwidth vs. large-capacity memory tier
- Hardware support for data transport between both memory tiers

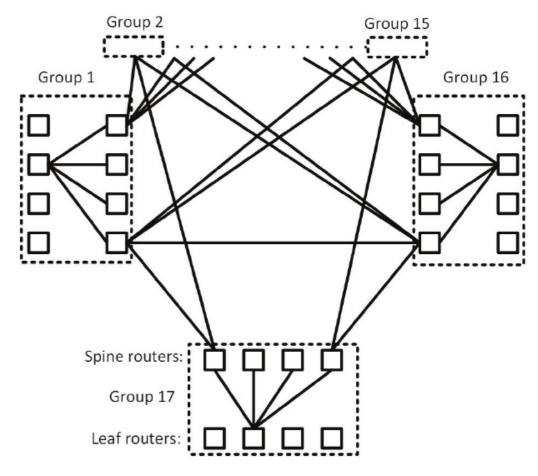
Use cases

- Separation of hot and cold data objects
- Staging/double buffering of kernel data

Brief Outlook on Network Technologies

Main high-end technologies

- Infiniband
- Slingshot


Linkspeed

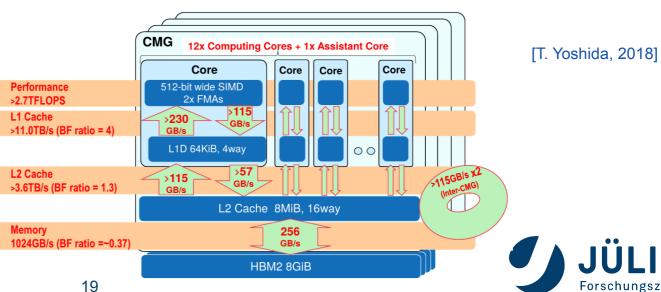
200 Gbps during the next few years

Topologies

- Dragonfly topology likely prime choice for largest systems
 - Cray Slingshot
 - Mellanox Dragonfly+

[Alexander Shpiner et al., 2017]

Known Exascale Architecture Swim Lanes


GPU-based: Frontier, Aurora, El Capitan

- Node architecture
 - 1-2 CPU
 - Multiple GPUs
 - → 340 TFlop/s per node
 - \rightarrow O(10,000) nodes
 - $B_{fo}/B_{mem} \gg 5, B_{mem} = ?$
- Dragonfly-type network

Commonality: Use of high-bandwidth memory technologies

CPU-based: Fugaku

- Node architecture
 - 1 CPU
 - >2.7 TFlop/s per node
 - $B_{\text{fp}}/B_{\text{mem}}$ ≈ 3, B_{mem} = 32 GiByte
- 6-dimensional torus network

Hierarchical Storage Architectures

Increasing diversity of storage device technologies used for HPC

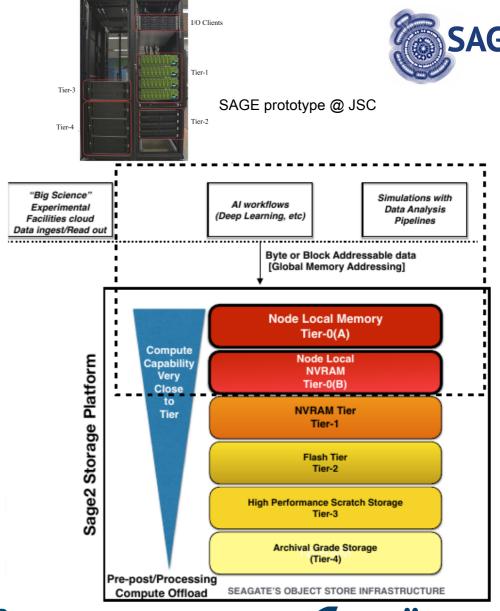
Upcoming HPC challenges and trends

- Scale-up to ≫O(10) TByte/s bandwidth
 - Mandates storage architectures becoming (more) hierarchical
- Enable near-node storage
 - Drop separation of compute and storage cluster
- Mitigate metadata performance limitations
 - Promote APIs beyond POSIX

Devices currently (or soon) in use at JSC:

Technology	Capacity [TiByte]	Bandwidth [GByte/s]	C [s]
Intel Optane DC	0.125-0.5	~4 (r/w mix)	35-140
Intel Optane SSD	0.4-1.5	~2	210-830
Toshiba CM5 SSD	0.8-6.4	~3	290-2300
Lenovo 01DC407	1.2	~0.30	4,500
Seagate Tatsu series	10	~0.17	65,000

SAGE: Hierarchical Object Store


Approach

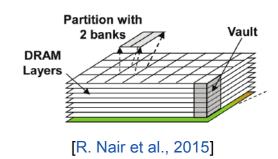
- Create hierarchical storage architecture based on
 - Advanced object storage technology = MERO
 - Multiple tiers with storage devices with different characteristics
 - Integrated compute capabilities
- Make new architecture usable

Native object storage platform

- Scalable re-writable fault-tolerant data objects
- Index store with key-value indices
- Support of "composite layouts" with objects distributed over multiple tiers
- Resource management capabilities

→ Poster A. Davis

Emerging Hardware Architectures and Technologies


Data-flow architectures

- Promising approach for improving energy efficiency
- Today based on FPGA, in future other options might emerge

In-memory compute / Near-Memory Acceleration

- Rationale: Reduce energy by avoiding data movement by moving computation to data
- Different implementations
 - Compute in stacked memory, e.g. AMC
 - Compute in memory buffer
 - Compute in PCM
- Challenge: Programming model

[J.v. Lunteren, 2016]

PROGRAMMING

Programming Models

Programming models and run-time systems critical for coping with increasing hardware complexity, but choice increases

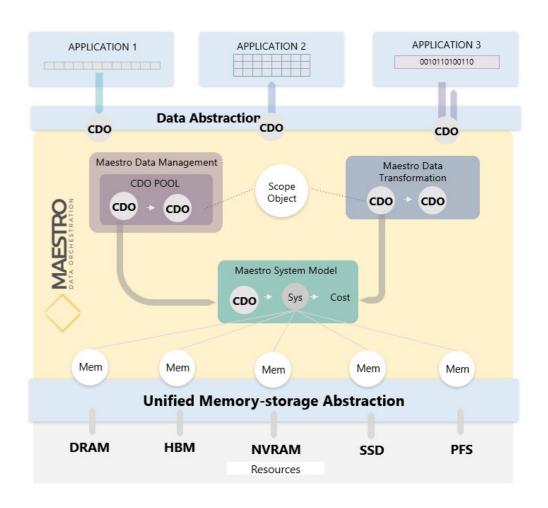
 MPI, OpenMP, OpenACC, TBB, PGAS, GPI, StarPU, OmpSs, CUDA, ROCm, Sycl, HPX, Kokkos, Legion, RAJA, ...

"MPI + X" likely dominates

- No one-fits-all parallel programming model
 - Example: Upcoming diversity of GPUs

Critical short-coming: Most programming models lack data orchestration capabilities

Data Orchestration: Maestro's Approach



Solution concept

- Systems software middleware that intelligently manages data placement and movement
- Object-based approach to encapsulate data with application and Maestro related metadata
- Data movement decision based on workflow annotations and real-time I/O monitoring

Implementation

- Data pool managed by middleware
- Give/take object semantics

Modernising Application Design

Programming means

[Schulthess, 2015]

- Specifying computation
- Managing computer resources

Opportunity for separation of concern

- Front-end: Computation specified by domain scientist using high-level languages
- Back-end: Management of computer resources by HPC experts

Other benefits

- Descriptive frontend could link to different back-ends → performance portability
- Efforts for implementing back-ends could become community effort
 - Allow domain scientists compete on frontend

FUTURE HPC INFRASTRUCTURES

New HPC Usage Models Emerging

ENABLING EDGE INTELLIGENCE

C²PS: COGNITIVE (CYBERNETIC* AND PHYSICAL) SYSTEMS

Smart sensors Cyber Intelligent **Physical** edae devices Systems **Transforming Data** into **New services** Information as soon as Cloud **Big Data** possible **HPC** Data Analytics / Cognitive computing

Enabling Intelligent data processing at the edge:

Fog computing
Edge computing
Stream analytics
Fast data...

True collaboration between edge devices and the cloud

ensuring:

- Data security / Privacy

- Lower bandwidth
- Better use of cloud

 Supercomputers cannot be designed as silos

Need for designing

e-infrastructures

supercomputers

including

- Secure exchanges between the edge devices and the cloud
- With human in the loop: Centaur era

[HiPEAC Vision, 2017]

^{*} As defined by Norbert Wiener: how humans, animals and machines control and communicate with each other.

Opening HPC Infrastructures: Expected Developments

Federated user management

- Few technical challenges
- Major organisational challenges

Setup clusters for deploying Cloud-type services with path to HPC world

But: HPC will remain a protected region

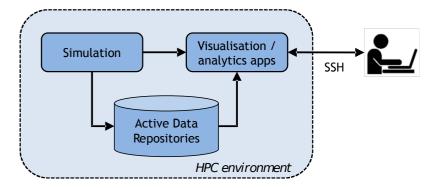
Option to deploy services in HPC world

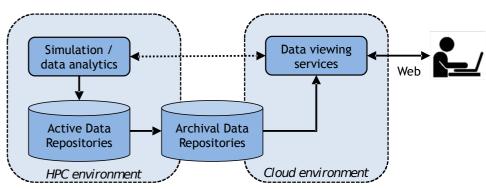
Examples: databases, workflow schedulers

Improve on interactivity

Support of interactive frameworks like Jupyter notebooks

Allow for new allocation models


Depends largely on funding agencies



JÜLICH

SUMMARY AND CONCLUSIONS

Summary and Conclusions

Paths to exascale architectures established

- Mainly based on compute accelerators
- Use of high-bandwidth memories mandatory for getting to >0.1 Ebyte/s
- First systems planned to become operational in 2021

Major challenges for users

- Cope with heterogeneity and diversity
 - Different processor architectures (x86, Arm)
 - Variety of GPUs
 - Deeper memory hierarchies
- Need for increased efforts in code modernisation aiming for split of concerns between domain scientists and HPC experts

Supercomputers becoming part of wider e-infrastructures

New approaches to managing boundaries to HPC environment

