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Outline
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• Budget constraints can change
• (Non-HPC) Market trends are of 

critical importance and can change
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INTRODUCTION



What Is Exascale Computing?

Answer 1: 1 EFlop/s during execution of the High-Performance Linpack 
benchmark
• Top500 continues to be important metric for governments and funding agencies

Answer 2: HPC infrastructure allow to address new science and 
engineering challenges providing 10-100x more performance compared 
to today’s systems
• Focus on purpose of supercomputers: enable science and engineering
• No performance metric fits all
• Monolithic supercomputers may in the future become less relevant
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Canonical Exascale Computing Challenges

Reducing power requirements
• Few sites can afford >10-15 MW
• Limits mainly dictated by budget constraints

Exploiting massive parallelism
• More computational performance 

→ more parallelism, scalability challenge 
→ need for mathematical algorithms

Maintaining a “balanced system”
• Improved data transport capabilities
• Flops are cheap, but data transport is expensive

Coping with run-time errors
• More components → higher risk of system failures → need for robust mathematical methods
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https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/


Exascale Science Cases

Fundamental sciences
• Astrophysics, cosmology
• Particle physics

Climate, weather and earth sciences
• Understanding and Predicting a Changing Climate
• Accurate Weather Forecasting and Meteorology

Materials science and energy research
• Material properties from atomic and electronic structure simulations
• Improving lower-CO2-impact energy sources

Life sciences and health
• Molecular life science and structural biology
• Neuroscience
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E. Lindahl, S. Ryan et al., “The Scientific   
Case for Computing in Europe 2018-2026”,
October 2018

[Luciano Rezzolla]

[ Luigi Vidale/University of Reading]

[BioExcel Centre of Excellence]

[Mathieu Salanne, EPFL] [J. Bigot et al., CEA][Mathieu Salanne, EPFL]
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http://www.prace-ri.eu/third-scientific-case/
http://www.prace-ri.eu/third-scientific-case/
http://www.prace-ri.eu/third-scientific-case/


Exascale Programs

US
• 3 exascale systems through CORAL2 procurement
• ECP project: application development, software technology, integration

Japan
• 1 exascale system at RIKEN
• Application-driven co-design of hardware

Europe
• 2 exascale systems through Joint Undertaking EuroHPC
• Research and innovation program, Centres of Excellence

China
• Details on exascale system deployments less clear
• Research program addressing development of applications and HPC environment
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Exascale Systems Planning
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LLNL, 2023

ANL, 2021 

ORNL, 2021 

EuroHPC, 2023 
RIKEN, 2021???
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EXASCALE HARDWARE TECHNOLOGIES



Diversifying Landscape of CPUs for HPC

Intel Xeon
• High compute capabilities, relatively low memory bandwidth
• Dominating market position

AMD EPYC
• High compute capabilities, slightly better memory bandwidth
• Emerging market position

IBM POWER9
• Low compute capabilities, relatively good data transport capabilities
• Used for current Top500 #1 and #2, lacking HPC market uptake

Marvell ThunderX2
• Moderate compute capabilities, relatively good memory bandwith
• Still low overall market uptake

Fujitsu A64FX
• High compute capability and memory bandwidth
• Used for Japan’s exascale system

Upcoming: European Processor Initiative
 1004.12.2019

https://www.european-processor-initiative.eu/


Fujitsu A64FX Features

Arm-based processor architecture
• Previous processor based on SPARC  

High floating-point operations 
throughput
• 2x 512-bit vector pipelines per core
• First processor to implement Arm’s new

SVE Instruction Set Architecture

High-memory bandwidth
• First processor to use HBM2
• But: relatively low memory capacity

Outstanding power efficiency
• 16.9 GFlop/s/W

 1104.12.2019

[T. Yoshida, 2018]

Number of cores 48 + x

Clock frequency 2 GHz

Throughput of FP64 3 TFlop/s

Memory bandwidth 1 TByte/s

Memory capacity 32 GiByte

https://www.fujitsu.com/jp/Images/20180821hotchips30.pdf


CPU: Core vs. Vector Parallelism

Strategies for increasing CPU-level parallelism of floating-point 
operations
• Increase number of cores

• Increase width of SIMD/vector instruction

    → Need for trade-off decisions
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Increase core count Increased SIMD/vector width

Pro More flexible thread-parallelism Simplified hardware architecture

Con Replication of instruction front-end
Increased power-consumption per node;
Vector/SIMD parallelism more difficult to exploit

04.12.2019



New vector ISA: Arm Scalable Vector Extension (SVE)

Key feature: Vector length agnostic
• Vector length not defined at compile time
• Multiple lengths supported by ISA: 

128, 256, …, 2048 bit

Required hardware 
support for VLA
• Update of predication registers
• Update of loop counters

 1304.12.2019

void daxpy(double a, double *restrict x, 
           double *restrict y, int n)
{
  int i;
  for (i = 0; i < n; i++)
    y[i] += a * x[i];
}

Arm C/C++/Fortran Compiler version 19.3

        mov     x8, xzr
        mov     z0.d, d0
        whilelo p1.d, xzr, x9
        ptrue   p0.d
.LBB0_2:
        Ld1d {z1.d}, p1/z, [x0, x8, lsl #3]
        ld1d {z2.d}, p1/z, [x1, x8, lsl #3]
        fmad z1.d, p0/m, z0.d, z2.d
        st1d {z1.d}, p1, [x1, x8, lsl #3]
        incd x8
        whilelo p1.d, x8, x9
        b.mi .LBB0_2
.LBB0_3:
        ret



Exploring Arm’s Scalable Vector Extension
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Change of number of SVE instructions as 
a function of the vector length

04.12.2019

Gem5 simulation results for 256 
bits and 512 bits

[B. Brank, N. Ho, S. Nasyr, DP, A. Portero, 2019]



Selected Processing Device Trends

Reduced precision and new floating-point formats
• Instructions for FP16 arithmetics became the standard
• Increasing support for bfloat16 floating-point format
• Other formats under investigation (e.g. posit)
   → Need for reduced/mixed-precision algorithms

Tensor instructions
• E.g. instructions introduced NVIDIA’s Volta GPU Architecture

→ Need for mathematical algorithms benefiting from such instructions

 1504.12.2019

[NVIDIA, 2017]

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/


Power Efficiency: State of Affair

Exascale targets
• US labs: 30 MWatt → 33 GFlop/s/Watt

Green500 list (Nov’19)
• #1: A64FX processor with 

16.9 GFlop/s/Watt
• Top positions dominated 

by compute accelerators
• Best Xeon-based system at #37:

5.8 GFlop/s/Watt

→ Use of compute
accelerators crucial

 1604.12.2019



Compute Accelerators for HPC: Today and Near Future

Today: NVIDIA GPUs
• Group of 3-4 Tesla GPUs interconnected via 

NVLink
– Up to ~20-30 TFlop/s per group

• 1-2 CPUs attached 
via PCIe or NVLink
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Future competitors: AMD and 
Intel GPUs
• Intel Xe GPU set for Aurora at ANL
• AMD GPUs set for Frontier at ORNL and El 

Capitan at LLNL
– Similar integration approach as for NVIDIA today

Common future trend: 
Improve integration of 
discrete accelerator and 
CPU through coherent 
I/O interfaces

04.12.2019



Memory Technologies (1/2)

Desirable memory performance features
• Large memory capacity Cmem 
• High memory bandwidth Bmem 

Main types of memory
• DDRx

– DDR4: Up to ~200 GByte/s per CPU using 8 channels
– DDR5: Aims on doubling performance
– Capacity of O(100) GiByte

• High-Bandwidth Memory (HBM)
– Today: ~250 GByte/s per stack
– Near future: ~400 GByte/s per stack
– Capacity of O(10) GiByte

● Capacity per stack announced to double

– More power efficient (lower data rate per line, shorter traces)
 1804.12.2019



Memory Technologies (2/2)

Main types of memory (cont.)
• Non-volatile memory

– Technologies: NAND Flash, 3D-Xpoint
– Attachment via I/O interface or memory bus
– Large variety of software interfaces

Significant differences in technology for ∆τ = Cmem / Bmem 
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NVIDIA V100 GPU HBM2 Δτ ≈ 20-40 ms

JUWELS compute node DDR4 Δτ ≈ 0.4 s

Intel Optane DC Memory attached 3D XPoint Δτ = O(35-140s)

Intel DC P4511 2 TByte PCIe attached NAND Flash Δτ ≈ 1300 s

04.12.2019



Deeper Memory Hierarchies

Rationale
• High-bandwidth memory tier based on technologies like 

HBM (maximise performance/€)

• Large-capacity memory tier based on technologies like 
DDR4 or non-volatile memory (maximise capacity/€)

Example: Summit node architecture
• HBM2 memory attached to NVIDIA V100

• DDR4 + Flash memory attached to IBM POWER9

Need for trade-off decisions
• Bandwidth and capacity ratio high-bandwidth 

vs. large-capacity memory tier

• Hardware support for data transport between both memory tiers

 2004.12.2019
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Deeper Memory Hierarchies: Exploitation Scenarios

Separation of hot and cold data objects
• Hot data used in performance critical regions (kernels) is 

accessible from High-Bandwidth Memory tier
• CHB must be large enough to hold hot data objects
• CLC must be large enough to hold hot data objects
• BHB should be balanced for given Bfp 

Data staging during kernel execution scenario (double buffering) 
• BLC must be large enough to allow data staging and results migration during kernel execution, i.e.

∆ttransport ≤ ∆tcompute 

Data staging outside of kernel execution scenario
• BLC must be large enough to allow data staging and results migration during kernel execution, i.e.

∆ttransport < ε ∆tcompute 

 2104.12.2019
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→ Need for mathematical algorithms exploiting data locality



Brief Outlook on Network Technologies

Main high-end technologies
• Infiniband
• Slingshot

Linkspeed
• 200 Gbps during the next few years

Topologies
• Dragonfly topology likely prime choice for

largest systems for cost reasons
– Cray Slingshot
– Mellanox Dragonfly+

• Reduced bi-section bandwidth
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[Alexander Shpiner et al., 2017]

04.12.2019

→ Need for communication-avoiding algorithms

https://doi.org/10.1109/HiPINEB.2017.11


Known Exascale Architecture Swim Lanes

GPU-based: Frontier, Aurora, El Capitan
• Node architecture

– 1-2 CPUs
– Multiple GPUs
– ≫40 TFlop/s per node 

→ O(10,000) nodes
– Bfp/Bmem ≫ 5?, Bmem = ~512-1024 GiByte?

• Dragonfly-type network
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CPU-based: Fugaku
• Node architecture

– 1 CPU
– >2.7 TFlop/s per node
– Bfp/Bmem ≈ 3, Bmem = 32 GiByte

• 6-dimensional torus network

Commonality: Use of 
high-bandwidth memory 
technologies

[T. Yoshida, 2018]

04.12.2019

https://www.fujitsu.com/jp/Images/20180821hotchips30.pdf


Hierarchical Storage Architectures

Increasing diversity of storage 

device technologies used
for HPC

Upcoming HPC challenges 
and trends
• Scale-up to O(10) TByte/s bandwidth≫

– Mandates storage architectures 
becoming (more) hierarchical

• Enable near-node storage
– Drop separation of compute and storage cluster

• Mitigate metadata performance limitations
– Promote APIs beyond POSIX
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Technology Capacity 
[TiByte]

Bandwidth 
[GByte/s] C [s]

Intel Optane DC 0.125-0.5 ~4 (r/w mix) 35-140

Intel Optane SSD 0.4-1.5 ~2 210-830

Toshiba CM5 SSD 0.8-6.4 ~3 290-2300

Lenovo 01DC407 1.2 ~0.30 4,500

Seagate Tatsu series 10 ~0.17 65,000

Devices currently (or soon) in use at JSC:

04.12.2019



Emerging Hardware Architectures and Technologies

Data-flow architectures
• Promising approach for improving energy efficiency
• Today based on FPGA, in future other options might emerge

In-memory compute / Near-Memory Acceleration
• Rationale: Reduce energy by avoiding data movement by moving computation to data
• Different implementations

– Compute in stacked memory, e.g. AMC
– Compute in memory buffer
– Compute in PCM

• Challenge: Programming model
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[R. Nair et al., 2015]

[J.v. Lunteren, 2016]
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https://ieeexplore.ieee.org/document/7095154
https://openpowerfoundation.org/programmable-near-memory-acceleration-on-contutto/


PROGRAMMING



Programming Models

Programming models and run-time systems critical for coping with 
increasing hardware complexity, but choice increases
• MPI, OpenMP, OpenACC, TBB, PGAS, GPI, StarPU, OmpSs, CUDA, ROCm, Sycl, HPX, Kokkos, 

Legion, RAJA, ...

“MPI + X” likely dominates
• No one-fits-all parallel programming model

– Example: Upcoming diversity of GPUs

Critical short-coming: Most programming models lack data 
transformation and data orchestration capabilities

 2704.12.2019



Data Transformation: Vectorization of Stencil Apps

Data layout options:

Option (B) removes need for vector shuffling
• But: Data layout in case of (B) depends on vector length
• Need to flexible when supporting different processor architectures

 2804.12.2019



Data Orchestration: Maestro’s Approach

Solution concept
• Systems software middleware that intelligently 

manages data placement and movement

• Object-based approach to encapsulate data 
with application and Maestro related metadata

• Data movement decision based on workflow 
annotations and real-time I/O monitoring
→ Need for mathematical solutions to
     optimisation problems

Implementation
• Data pool managed by middleware

• Give/take object semantics
 2904.12.2019

https://www.maestro-data.eu/


Modernising Application Design

Programming means
• Specifying computation
• Managing computer resources

Opportunity for separation of concern
• Front-end: Computation specified by domain scientist using high-level languages
• Back-end: Management of computer resources by HPC experts

Other benefits
• Descriptive frontend could link to different back-ends → performance portability
• Efforts for implementing back-ends could become community effort

– Allow domain scientists compete on frontend

 30

[Schulthess, 2015]
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https://www.nature.com/articles/nphys3294


FUTURE HPC INFRASTRUCTURES



New HPC Usage Models Emerging
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Need for designing 
e-infrastructures including 
supercomputers
• Supercomputers cannot be 

designed as silos

04.12.2019

[ETP4HPC, 2020]



Simulation
Visualisation / 
analytics apps

Active Data 
Repositories

HPC environment

SSH

Simulation / 
data analytics

Data viewing
services

Active Data 
Repositories

HPC environment

Web

Archival Data 
Repositories

Cloud environment

Opening HPC Infrastructures: Expected Developments

Federated user management
• Few technical challenges
• Major organisational challenges

Setup clusters for deploying Cloud-type 
services with path to HPC world
• But: HPC will remain a protected region

Option to deploy services in HPC world
• Examples: databases, workflow schedulers

Improve on interactivity
• Support of interactive frameworks like Jupyter notebooks

Allow for new allocation models
• Depends largely on funding agencies

 3304.12.2019

https://fenix-ri.eu/


ROLE OF MATHEMATICAL METHODS AND ALGORITHMS



Role of Mathematical Methods and Algorithms: ETP4HPC’s view

Robust methods and algorithms enabling extreme scalability
• Need for more parallelism at all levels, support of communication avoiding
• Support of reduced/mixed-precision calculations (trade performance for accuracy)

Methods for (scalable) data analytics and artificial intelligence
• Shift from a compute-centric view to a more data-centric view
• Algorithms for data discovery

Algorithms reducing energy-to-solution
• Characterisation of algorithms wrt energy requirements
• Minimisation of data movement and improved hardware utilisation

Vertical integration and validation of mathematical methods and algorithms
• Tuning of algorithm parameters for exascale problems
• Integration into diverse HPC and beyond software stacks

 3504.12.2019



SUMMARY, CONCLUSIONS AND OUTLOOK



Summary and Conclusions

Paths to exascale architectures established
• Mainly based on compute accelerators
• Use of high-bandwidth memories mandatory for getting to >0.1 Ebyte/s

Major challenges for users
• Cope with heterogeneity and diversity

– Different processor architectures (x86, Arm)
– Variety of GPUs

• Exploit deeper memory hierarchies
• Need for increased efforts in code modernisation aiming for split of concerns between domain 

scientists and HPC expertss

Critical role of mathematical methods and algorithms

 3704.12.2019



Outlook on Supercomputers at JSC

 3804.12.2019
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