000872905 001__ 872905 000872905 005__ 20210130004325.0 000872905 0247_ $$2doi$$a10.22323/1.334.0119 000872905 0247_ $$2Handle$$a2128/23947 000872905 037__ $$aFZJ-2020-00370 000872905 041__ $$aEnglish 000872905 1001_ $$0P:(DE-HGF)0$$aHorsley, Roger$$b0$$eCorresponding author 000872905 1112_ $$aThe 36th Annual International Symposium on Lattice Field Theory$$cMichigan State University$$d2018-07-22 - 2018-07-28$$wEast Lansing 000872905 245__ $$aThe strange quark contribution to the spin of the nucleon 000872905 260__ $$bSissa Medialab Trieste, Italy$$c2019 000872905 29510 $$aProceedings of The 36th Annual International Symposium on Lattice Field Theory — PoS(LATTICE2018) - Sissa Medialab Trieste, Italy, 2019. - ISBN - doi:10.22323/1.334.0119 000872905 300__ $$a119 000872905 3367_ $$2ORCID$$aCONFERENCE_PAPER 000872905 3367_ $$033$$2EndNote$$aConference Paper 000872905 3367_ $$2BibTeX$$aINPROCEEDINGS 000872905 3367_ $$2DRIVER$$aconferenceObject 000872905 3367_ $$2DataCite$$aOutput Types/Conference Paper 000872905 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1579533195_30847 000872905 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000872905 520__ $$aQuark line disconnected matrix elements of an operator, such as the axial current, are difficult to compute on the lattice. The standard method uses a stochastic estimator of the operator, which is generally very noisy. We discuss and develop further our alternative approach using the Feynman-Hellmann theorem which involves only evaluating two-point correlation functions. This is applied to computing the contribution of the quark spin to the nucleon and in particular for the strange quark. In this process we also pay particular attention to the development of an SU(3) flavour breaking expansion for singlet operators. 000872905 536__ $$0G:(DE-HGF)POF3-513$$a513 - Supercomputer Facility (POF3-513)$$cPOF3-513$$fPOF III$$x0 000872905 588__ $$aDataset connected to CrossRef Conference 000872905 7001_ $$0P:(DE-HGF)0$$aNakamura, Yoshifumi$$b1 000872905 7001_ $$0P:(DE-HGF)0$$aPerlt, Holger$$b2 000872905 7001_ $$0P:(DE-Juel1)144441$$aPleiter, D.$$b3$$ufzj 000872905 7001_ $$0P:(DE-HGF)0$$aRakow, P. E. L.$$b4 000872905 7001_ $$0P:(DE-HGF)0$$aSchierholz, Gerrit$$b5 000872905 7001_ $$0P:(DE-HGF)0$$aSchiller, Arwed$$b6 000872905 7001_ $$0P:(DE-HGF)0$$aStuben, Hinnerk$$b7 000872905 7001_ $$0P:(DE-HGF)0$$aYoung, Ross D.$$b8 000872905 7001_ $$0P:(DE-HGF)0$$aZanotti, J. M.$$b9 000872905 773__ $$a10.22323/1.334.0119 000872905 8564_ $$uhttps://juser.fz-juelich.de/record/872905/files/LATTICE2018_119.pdf$$yOpenAccess 000872905 8564_ $$uhttps://juser.fz-juelich.de/record/872905/files/LATTICE2018_119.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000872905 909CO $$ooai:juser.fz-juelich.de:872905$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000872905 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144441$$aForschungszentrum Jülich$$b3$$kFZJ 000872905 9131_ $$0G:(DE-HGF)POF3-513$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vSupercomputer Facility$$x0 000872905 9141_ $$y2019 000872905 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000872905 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000872905 920__ $$lyes 000872905 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000872905 980__ $$acontrib 000872905 980__ $$aVDB 000872905 980__ $$aUNRESTRICTED 000872905 980__ $$acontb 000872905 980__ $$aI:(DE-Juel1)JSC-20090406 000872905 9801_ $$aFullTexts