000872919 001__ 872919
000872919 005__ 20240712113154.0
000872919 0247_ $$2doi$$a10.1016/j.jpowsour.2019.227359
000872919 0247_ $$2ISSN$$a0378-7753
000872919 0247_ $$2ISSN$$a1873-2755
000872919 0247_ $$2Handle$$a2128/26215
000872919 0247_ $$2WOS$$aWOS:000509632300047
000872919 037__ $$aFZJ-2020-00384
000872919 082__ $$a620
000872919 1001_ $$0P:(DE-HGF)0$$aNiroumand, Amir M.$$b0$$eCorresponding author
000872919 245__ $$aIn-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part III: Manufacturing applications
000872919 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000872919 3367_ $$2DRIVER$$aarticle
000872919 3367_ $$2DataCite$$aOutput Types/Journal article
000872919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605712078_23294
000872919 3367_ $$2BibTeX$$aARTICLE
000872919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872919 3367_ $$00$$2EndNote$$aJournal Article
000872919 520__ $$aThis work describes a novel diagnostic technique for detection and isolation of manufacturing defects in polymer electrolyte fuel cell stacks. Two of the main causes of early stack failure are membrane pinholes and electric shorts. Membrane pinholes result in the local hydrogen crossover from anode to cathode, which reduces fuel utilization. With the growth of the pinhole, the crossed over hydrogen exits the cathode as hydrogen emission. When this emission passes the safe lower explosion limit of 4% hydrogen in air, the stack reaches its end of life (EOL). Alternatively, a low resistive point between the anode and cathode results in current flow through the contact point and local heat generation. This could burn the membrane and result in EOL of the fuel cell stack. A diagnostic technique is proposed to detect cells in which membrane pinholes or electric short occur. The technique allows both failure mechanisms to be isolated by means of a straightforward algorithm. The detection of the failure can be used as a pass/fail criterion during fuel cell stack manufacturing, whereas the isolation of the failure modes can be used to inform suitable repair procedures to be performed on the failed stacks.
000872919 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000872919 588__ $$aDataset connected to CrossRef
000872919 7001_ $$0P:(DE-HGF)0$$aHomayouni, Hooman$$b1
000872919 7001_ $$0P:(DE-HGF)0$$aGoransson, Gert$$b2
000872919 7001_ $$0P:(DE-HGF)0$$aOlfert, Mark$$b3
000872919 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b4$$ufzj
000872919 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2019.227359$$gp. 227359 -$$p227359 -$$tJournal of power sources$$v448$$x0378-7753$$y2020
000872919 8564_ $$uhttps://juser.fz-juelich.de/record/872919/files/In-situ%20diagnostic%20tools%20for%20hydrogen%20transfer%20leak%20characterization%20in%20PEM-1.pdf$$yRestricted
000872919 8564_ $$uhttps://juser.fz-juelich.de/record/872919/files/Post%20print.pdf$$yPublished on 2019-11-13. Available in OpenAccess from 2021-11-13.
000872919 8564_ $$uhttps://juser.fz-juelich.de/record/872919/files/In-situ%20diagnostic%20tools%20for%20hydrogen%20transfer%20leak%20characterization%20in%20PEM-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872919 909CO $$ooai:juser.fz-juelich.de:872919$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b4$$kFZJ
000872919 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000872919 9141_ $$y2020
000872919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872919 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872919 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872919 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000872919 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000872919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000872919 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000872919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872919 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872919 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872919 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872919 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872919 920__ $$lyes
000872919 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000872919 9801_ $$aFullTexts
000872919 980__ $$ajournal
000872919 980__ $$aVDB
000872919 980__ $$aUNRESTRICTED
000872919 980__ $$aI:(DE-Juel1)IEK-13-20190226
000872919 981__ $$aI:(DE-Juel1)IET-3-20190226