001     872919
005     20240712113154.0
024 7 _ |a 10.1016/j.jpowsour.2019.227359
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/26215
|2 Handle
024 7 _ |a WOS:000509632300047
|2 WOS
037 _ _ |a FZJ-2020-00384
082 _ _ |a 620
100 1 _ |a Niroumand, Amir M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a In-situ diagnostic tools for hydrogen transfer leak characterization in PEM fuel cell stacks part III: Manufacturing applications
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605712078_23294
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This work describes a novel diagnostic technique for detection and isolation of manufacturing defects in polymer electrolyte fuel cell stacks. Two of the main causes of early stack failure are membrane pinholes and electric shorts. Membrane pinholes result in the local hydrogen crossover from anode to cathode, which reduces fuel utilization. With the growth of the pinhole, the crossed over hydrogen exits the cathode as hydrogen emission. When this emission passes the safe lower explosion limit of 4% hydrogen in air, the stack reaches its end of life (EOL). Alternatively, a low resistive point between the anode and cathode results in current flow through the contact point and local heat generation. This could burn the membrane and result in EOL of the fuel cell stack. A diagnostic technique is proposed to detect cells in which membrane pinholes or electric short occur. The technique allows both failure mechanisms to be isolated by means of a straightforward algorithm. The detection of the failure can be used as a pass/fail criterion during fuel cell stack manufacturing, whereas the isolation of the failure modes can be used to inform suitable repair procedures to be performed on the failed stacks.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Homayouni, Hooman
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Goransson, Gert
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Olfert, Mark
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eikerling, Michael
|0 P:(DE-Juel1)178034
|b 4
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2019.227359
|g p. 227359 -
|0 PERI:(DE-600)1491915-1
|p 227359 -
|t Journal of power sources
|v 448
|y 2020
|x 0378-7753
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/872919/files/In-situ%20diagnostic%20tools%20for%20hydrogen%20transfer%20leak%20characterization%20in%20PEM-1.pdf
856 4 _ |y Published on 2019-11-13. Available in OpenAccess from 2021-11-13.
|u https://juser.fz-juelich.de/record/872919/files/Post%20print.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/872919/files/In-situ%20diagnostic%20tools%20for%20hydrogen%20transfer%20leak%20characterization%20in%20PEM-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872919
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)178034
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21