000872921 001__ 872921
000872921 005__ 20240712113155.0
000872921 0247_ $$2doi$$a10.1021/acsami.9b16326
000872921 0247_ $$2ISSN$$a1944-8244
000872921 0247_ $$2ISSN$$a1944-8252
000872921 0247_ $$2altmetric$$aaltmetric:69971808
000872921 0247_ $$2pmid$$apmid:31650835
000872921 0247_ $$2WOS$$aWOS:000499740300096
000872921 037__ $$aFZJ-2020-00386
000872921 082__ $$a600
000872921 1001_ $$00000-0002-6268-4650$$aFernandez-Alvarez, Victor M.$$b0
000872921 245__ $$aInterface Properties of the Partially Oxidized Pt(111) Surface Using Hybrid DFT–Solvation Models
000872921 260__ $$aWashington, DC$$bSoc.$$c2019
000872921 3367_ $$2DRIVER$$aarticle
000872921 3367_ $$2DataCite$$aOutput Types/Journal article
000872921 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603082923_17214
000872921 3367_ $$2BibTeX$$aARTICLE
000872921 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872921 3367_ $$00$$2EndNote$$aJournal Article
000872921 520__ $$aThis article reports a theoretical–computational effort to model the interface between an oxidized platinum surface and aqueous electrolyte. It strives to account for the impact of the electrode potential, formation of surface-bound oxygen species, orientational ordering of near-surface solvent molecules, and metal surface charging on the potential profile along the normal direction. The computational scheme is based on the DFT/ESM-RISM method to simulate the charged Pt(111) surface with varying number of oxygen adatoms in acidic solution. This hybrid solvation method is known to qualitatively reproduce bulk metal properties like the work function. However, the presented calculations reveal that vital interface properties such as the electrostatic potential at the outer Helmholtz plane are highly sensitive to the position of the metal surface slab relative to the DFT-RISM boundary region. Shifting the relative position of the slab also affects the free energy of the system. It follows that there is an optimal distance for the first solvent layer within the ESM-RISM framework, which could be found by optimizing the position of the frozen Pt(111) slab. As it stands, manual sampling of the position of the slab is impractical and betrays the self-consistency of the method. Based on this understanding, we propose the implementation of a free energy optimization scheme of the relative position of the slab in the DFT-RISM boundary region. This optimization scheme could considerably increase the applicability of the hybrid method.
000872921 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000872921 588__ $$aDataset connected to CrossRef
000872921 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael H.$$b1$$eCorresponding author
000872921 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.9b16326$$gVol. 11, no. 46, p. 43774 - 43780$$n46$$p43774 - 43780$$tACS applied materials & interfaces$$v11$$x1944-8252$$y2019
000872921 8564_ $$uhttps://juser.fz-juelich.de/record/872921/files/acsami.9b16326-1.pdf$$yRestricted
000872921 8564_ $$uhttps://juser.fz-juelich.de/record/872921/files/acsami.9b16326-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000872921 909CO $$ooai:juser.fz-juelich.de:872921$$pVDB
000872921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b1$$kFZJ
000872921 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000872921 9141_ $$y2020
000872921 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872921 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872921 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000872921 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2017
000872921 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872921 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872921 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872921 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872921 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872921 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000872921 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2017
000872921 920__ $$lyes
000872921 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000872921 980__ $$ajournal
000872921 980__ $$aVDB
000872921 980__ $$aI:(DE-Juel1)IEK-13-20190226
000872921 980__ $$aUNRESTRICTED
000872921 981__ $$aI:(DE-Juel1)IET-3-20190226