001     872925
005     20240712113155.0
024 7 _ |a 10.1021/acs.chemmater.9b04811
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 2128/26214
|2 Handle
024 7 _ |a altmetric:88450991
|2 altmetric
024 7 _ |a WOS:000513299400032
|2 WOS
037 _ _ |a FZJ-2020-00390
082 _ _ |a 540
100 1 _ |a Li, Weihan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy
260 _ _ |a Washington, DC
|c 2020
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605711724_23295
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphorene, single- or few-layered black phosphorus, has been rediscovered as a promising two-dimensional material owing to its unique optical, thermal, and electrical properties with potential applications in optoelectronics, nanoelectronics, and energy storage. However, rapid degradation under ambient condition highly limits the practical applications of phosphorene. Solving the degradation problem demands an understanding of the oxidization process. We, for the first time, apply synchrotron-based X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge structure (XANES), and scanning transmission X-ray microscopy (STXM) for the nanoscale chemical imaging of phosphorene degradation. Through these methods, we have identified chemical details of the morphological effect and clarified thickness and proximity effects, which control the oxidization process. Furthermore, the entire oxidization process of phosphorene has also been studied by in situ XPS and XANES, showing the step-by-step oxidization process under the ambient condition. Theoretical calculations at the density functional theory level support experimental findings. This detailed study provides a better understanding of phosphorene degradation and is valuable for the development of phosphorene-based materials.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Zhiqiang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhao, Feipeng
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Minsi
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gao, Xuejie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhao, Yang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wang, Jian
|0 P:(DE-Juel1)179392
|b 6
700 1 _ |a Zhou, Jigang
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hu, Yongfeng
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Xiao, Qunfeng
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Cui, Xiaoyu
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Eslamibidgoli, Mohammad Javad
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Eikerling, Michael. H.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Li, Ruying
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Brandys, Frank
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Divigalpitiya, Ranjith
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Sham, Tsun-Kong
|0 P:(DE-HGF)0
|b 16
|e Corresponding author
700 1 _ |a Sun, Xueliang
|0 P:(DE-HGF)0
|b 17
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.9b04811
|g p. acs.chemmater.9b04811
|0 PERI:(DE-600)1500399-1
|p 1272-1280
|t Chemistry of materials
|v 32
|y 2020
|x 1520-5002
856 4 _ |y Published on 2020-01-15. Available in OpenAccess from 2021-01-15.
|u https://juser.fz-juelich.de/record/872925/files/Phosphorene%20Degradation%20-%20Post%20Print.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/872925/files/acs.chemmater.9b04811.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/872925/files/acs.chemmater.9b04811.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:872925
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21