


method is employed in multicell battery packs as present in

many practical applications: interference from (dis)charge

currents and crosstalk induced by inductive coupling during

simultaneous impedance measurements of the cells.

1 | INTRODUCTION

Lithium-ion batteries are often used to power, eg,

(hybrid) electric vehicles. To ensure safe use of the battery

and to warrant a certain lifetime, battery temperature plays

a vital role. Therefore, one of the purposes of a battery man-

agement system (BMS) is to monitor temperature and to

keep it within a specified range.1,2 For example, high bat-

tery temperatures can induce thermal runaway, which may

cause fire or explosions3 and accelerate ageing of the bat-

tery, thus reducing lifetime and performance.2Various tem-

perature indication methods exist for Li-ion batteries.4

While the measured surface temperature is usually

assumed to be close to the (average) internal temperature of

the battery, the internal temperature may differ signifi-

cantly from the surface temperature, especially under

(heavy) load conditions. Under these conditions, substan-

tial heat generation can occur internally in the battery cell.

This may lead to the development of thermal gradients, in

which case the measured surface temperate could (signifi-

cantly) underestimate themaximum (internal) temperature

of the battery cell; see, eg, Raijmakers et al4 and references

therein. For battery safety, accurate information of the

internal temperature is important for early detection of

thermal runaway. Considering the recent trend of battery

pack supervision on the cell level, instead of measuring the

surface temperature directly with external temperature sen-

sors, the (average) internal temperature can be estimated

using online electrochemical impedance spectroscopy

(EIS)5,6 by inferring a temperature relation between the

electrochemical battery impedance and the battery temper-

ature.7-16 Using impedance-based temperature estimation

is a promising technique as it may provide faster and more

accurate information on the (average) internal temperature

of a battery cell. Although in some cases the EIS measure-

ments may increase the hardware cost of battery manage-

ment, in applications where batteries are monitored at the

cell level, the EIS measurement can be performed with

(minor adjustments to) the electronics that are already pre-

sent at little or no increase in cost. More precisely, the stim-

ulus for performing EIS measurements in this study is

generated by reusing the passive-balancing hardware

already present.17

A number of methods for impedance-based tempera-

ture estimation exist. For instance, Schmidt et al10 relate

the real part of the impedance at a fixed frequency to the

battery temperature. This is also done by Richardson

et al.18 However, they also use a thermal-impedance

model (eg, the heat equation for heat conduction in a cyl-

inder) combined with measurements of the surface tem-

perature. In more recent work, this thermal-impedance

model only takes the EIS-based temperature estimate as

an input.12 For the sake of comparing estimation methods

in terms of their impedance-based temperature estimation,

the thermal-impedance model is not taken into account.

Contrary to the aforementioned methods, Spinner et al15

infer a temperature relation from the imaginary part of the

impedance at a fixed frequency rather than from the real

part of the impedance. Instead of relating temperature to

either the real or imaginary part of the impedance,

Srinivasan,11 who expands on previous work,19 infers a

relation from the phase shift of the impedance. It should

be noted that the aforementioned methods do not neces-

sarily choose the same frequency. Raijmakers et al8 do not

employ a fixed frequency but define the so-called zero-

intercept frequency, ie, the frequency for which the imagi-

nary part of the impedance is zero. This implies that a

relation based on the imaginary part of the impedance is

used. Finally, Beelen et al7 have developed a general

framework for comparison, analysis, and synthesis of

methods for impedance-based temperature estimation in

which all existing methods can be considered as special

cases of this general framework.

Most of the aforementioned research on using EIS for

temperature estimation demonstrates this functionality

on the single-cell level, often under laboratory conditions.

In order to provide more power and energy for certain

applications, single cells need to be connected in series

and/or parallel to form a battery pack. To allow individ-

ual cells to be monitored, it is of interest to understand

how EIS measurements on single cells are affected by the

measurement artefacts present in battery packs, namely,

(dis)charge currents and crosstalk interference, ie, inter-

ference induced by simultaneously performing EIS

(at the same frequency) on several cells in a battery pack.

Although crosstalk interference can easily be avoided by

measuring the impedance of the battery cells one by one,

ie, not measuring simultaneously, this will lead to rela-

tively high sample times for the temperature estimates.

Therefore, this is not suitable for real-time monitoring of

the (average) internal temperature, which is of paramount

importance for safety of the battery cell (eg, early detection

of thermal runaway). Therefore, if we accept the problem

of crosstalk and are able to find a solution for this prob-

lem, impedance-based temperature estimation would be a

suitable method for application in battery packs. Both of

the aforementioned artefacts are known to influence the

EIS measurements, as was shown for (dis)charge currents

by Raijmakers et al9 and for crosstalk interference.20 How-

ever, a solution on how to deal with the combination of
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these two artefacts and how to conduct impedance-based

temperature estimation for battery packs accurately has

not yet been presented in the existing literature.

In this paper, we will study impedance-based tempera-

ture estimation in the combined presence of (dis)charge cur-

rents and crosstalk interference induced by simultaneous

impedance measurements in cells. To the best of the

authors' knowledge, there have not yet been any studies

that have investigated the applicability of impedance-

based temperature estimation to battery packs since the

existing literature focuses predominantly on impedance-

based temperature estimation at the cell level. Therefore,

the goal of this paper is to develop and present a solid

proof of concept which shows that impedance-based tem-

perature estimation can be extended towards battery

packs. However, as we will take the first steps towards the

extension of the method, more research will be needed to

further develop and extensively validate the method in

order to advance it to a more mature state.

As a first contribution of the paper, we will focus on

modelling crosstalk interference and (dis)charge cur-

rents in order to incorporate these artefacts in the

framework for impedance-based temperature estima-

tion.7 It is shown that crosstalk depends neither on

temperature nor on battery state-of-charge (SoC), which

has not been investigated by Raijmakers et al.20 Subse-

quently, we will show how the disturbance caused by

the measured time-domain (dis)charge currents can be

modelled as a frequency-domain disturbance on the

measured impedance. This will be done by using both a

deterministic and a stochastic modelling approach.

Then, we will show how these models can be incorpo-

rated in the temperature estimation framework pres-

ented in our previous work.7 More precisely, the

crosstalk model can be used to compensate for the effect

of crosstalk on the temperature estimation. However,

since it is not possible to measure the (dis)charge cur-

rent synchronously with the impedance measurements

with the electronics used in this study,1 the model of the

(dis)charge current cannot be used to compensate for

the effect of the (dis)charge current. Therefore, the latter

model will be used purely for analysis purposes so as to

investigate the (deteriorating) effect of this artefact on

the temperature estimation. The topic of synchronously

measuring the battery impedance with the (dis)charge

current can be seen as an important next step in the

development of methods for impedance-based tempera-

ture estimation in battery packs.

Second, we will use the so-called extended tempera-

ture estimation framework to design the optimal

(in the mean-square-error sense) temperature estima-

tion method. In the design process, the excitation fre-

quency used in EIS and the weighting between real

and imaginary part of the impedance can be chosen so

as to arrive at the lowest mean-square estimation error

(MSE). We will analyse the consequence of these

design choices on the accuracy of the method using a

Monte Carlo simulation study in the presence of

crosstalk, (dis)charge currents, and in the presence of

both artefacts simultaneously. All of these cases will

lead to a different optimal impedance-based tempera-

ture estimation procedure. We will demonstrate the

most accurate impedance-based temperature estima-

tion method experimentally on a two-cell battery

pack, which can be interpreted as the first step of

developing this method towards application on a full-

size battery pack.

The outline of this paper is as follows. The general

concept of impedance-based temperature estimation in

battery cells or battery packs is introduced in Section 2.

Subsequently, in Sections 3 and 4, crosstalk interference

and (dis)charge currents, respectively, will be investi-

gated and modelled. The extended estimation framework,

based on the framework presented by Beelen et al,7 is

then derived in Section 5, using the modelled crosstalk

and (dis)charge current interference. In Section 6, the

extended temperature estimation framework is used in a

Monte Carlo simulation study to analyse the effect of the

design choices in terms of the accuracy of temperature

estimation. An optimal impedance-based temperature

estimation method will be derived from this analysis and

validated experimentally in Section 7. Finally, conclu-

sions are drawn in Section 8.

2 | IMPEDANCE-BASED
TEMPERATURE ESTIMATION

In this section, first, we will briefly summarise the frame-

work for impedance-based temperature estimation7 and

introduce a general impedance model for the case of

arranging multiple battery cells into a battery pack,

which can be used in combination with the aforemen-

tioned framework. Furthermore, the experimental setup

that is used for modelling, analysis, and validation will be

presented.

2.1 | Impedance-based temperature
estimation framework

The concept of impedance-based temperature estimation

and the general estimation framework for comparison,

accuracy analysis, and synthesis of impedance-based esti-

mation methods have been introduced in our previous

work7 and can be summarised as follows.
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The battery impedance Z can be interpreted as the

battery frequency response, where the battery takes a

sinusoidal voltage or current input with frequency f, and

produces a sinusoidal current or voltage output, respec-

tively, with the same frequency. The ratio between input

and output can be described as a (complex) impedance

Z fð Þ= V fð Þ
I fð Þ , ð1Þ

where the magnitude of the excitation signal should be

sufficiently small in order to guarantee local linearity of

the system yet not too small to prevent a poor signal-to-

noise ratio (SNR). The technique of obtaining the fre-

quency response of the battery is known as EIS and is

widely used for gathering information about batte-

ries.5,21-24 In this study, EIS measurements have been

conducted in galvanostatic mode by superimposing a

sinusoidal current of a single frequency f with an ampli-

tude of 100
ffiffiffi
2

p
mA on the load current of the battery

(whether or not a load current is present). The single-

frequency approach is taken in this paper because of the

limitations of the (prototype) measurement device. How-

ever, methods for conducting EIS measurements with a

certain frequency band also exist; see, eg, Ranieri et al,24

where a pseudorandom binary sequence of a certain

bandwidth is used to excite the battery.

The modelling concept that we follow can be described as

follows. The true battery impedance can be denoted by Z and

can be interpreted as a function Z : R3 ! ℂ that depends on

excitation frequency f, temperature T, SoC, and possibly other

effects not considered in this study, such as battery ageing.25

Although it is important to investigate and take into account

the effect of ageing on the battery impedance and the

corresponding temperature estimates,8,26 this paper focuses

on two issues directly related to extending the method of

impedance-based temperature estimation to battery packs.

Investigating the ageing phenomenon can be seen as a sepa-

rate valuable next step for future research. A model of the

impedance Z can be denoted by Ẑ . It should be noted that

the model Ẑ is not based on modelling approaches such

as first principles modelling or equivalent-circuit model-

ling27,28 as this paper focuses on the (temperature) estima-

tion problem and not on battery modelling. Instead, the

model Ẑ will be a static model based on a lookup table for

which we will assume that Ẑ only depends on f, T, and

SoC. Moreover, the signal analysis techniques that are

needed to obtain Z from (1) are not investigated in this

paper. Incorporating the dependency of the impedance

on f, T, and SoC results in the lookup table mapping Ẑ :

R
3 !ℂ . More precisely, the model Ẑ will consist of a

three-dimensional lookup table that takes f, T, and SoC as

inputs for the lookup action. Consequently, this means that

the modelled impedance Ẑ is only available for the finite

range of f, T, and SoC and the finite number of grid points

of f, T, and SoC. The range can be chosen such that it covers

the operational space of the battery. For values of f, T, and

SoC in between the (measured) grid points, the modelled

impedance Ẑ can be obtained by using interpolation.

In order to construct the battery model Ẑ (ie, filling the

lookup table at certain grid points), the battery imped-

ance needs to be measured at the selected grid points.

Since the measurement device used in this paper intro-

duces additive measurement noise v∈ℂ to the measured

impedance, the measured battery impedance can be inter-

preted as the true impedance Z with additive noise, ie,

Zmeas =Z f ,T,SoCð Þ+ v, ð2Þ

where v is complex-valued zero-mean Gaussian noise. Sub-

sequently, the lookup table Ẑ can be constructed as fol-

lows. First, we assume that, by taking a sufficient

number of measurements at every grid point, the average

value of the additive noise will approach zero. Assuming

that SoC information is available, eg, through SoC esti-

mation, the model Ẑ will be a three-dimensional lookup

table (ie, f, T, and SoC as inputs) and can be con-

structed by

Ẑ f r ,Tr ,SoCrð Þ= 1

L

XL

i=1

Z f r ,Tr ,SoCrð Þ+ vi, ð3Þ

where L ∈ N is the number of measurements taken per

grid point. The frequency, temperature, and SoC grid

points fr, Tr, and SoCr, respectively, need to be selected

on the basis of the desired range of validity of the model

Ẑ . Now, the model Ẑ f r ,Tr ,SoCrð Þ can be considered as a

lookup table at the selected grid points. As mentioned

previously, values in between the grid points can be

obtained by interpolation, resulting in a battery model

without grid-point indices Ẑ f ,T,SoCð Þ (ie, a lookup table

model with built-in interpolation function).

To estimate the battery temperature on the basis of

the modelled battery impedance Ẑ and the measured bat-

tery impedance Zmeas, a nonlinear least-squares estimator

has been developed in a previous study,7 which is

given by

T̂ f ,α,Zmeas,SoCð Þ=argmin
T

α�Z
2
1 f ,T,Zmeas,SoCð Þ

+ 1−αð Þ�Z2
2 f ,T,Zmeas,SoCð Þ,

ð4Þ

where f is the excitation frequency, Zmeas is the measured

battery impedance obtained through EIS, and α ∈ [0, 1]

denotes a selector variable. In Cartesian coordinates, �Z1

and �Z2 are given by
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�Z1 f ,T,Zmeas,SoCð Þ=ReðẐ f ,T,SoCÞ−Zmeasð Þ, ð5aÞ

�Z2 f ,T,Zmeas,SoCð Þ= ImðẐ f ,T,SoCÞ−Zmeasð Þ: ð5bÞ

In (4), the real and imaginary parts of a complex number,

eg, Z = a + jb, where a, b ∈ R and j satisfies j2 = −1, are

denoted by Re(Z) = a and Im(Z) = b. For ease of exposi-

tion, only Re(Z) and Im(Z) are considered in this paper

by �Z1 and �Z2 , respectively, although other choices are

possible.7 In (4), taking α = 1 can be interpreted as using

only Re(Z) to estimate the temperature and taking α = 0

can be interpreted as using only Im(Z) to estimate the tem-

perature. Taking 0≤α≤ 1 will lead to a temperature esti-

mate that is based on both Re(Z) and Im(Z). In this paper, a

single impedance measurement will be used to estimate the

temperature with the estimator in (4). This takes approxi-

mately 1 second. Of course, multiple impedance measure-

ments (possibly at different frequencies) can be used in (4),

which might yield a smaller estimation error since varia-

tions are averaged.7 However, for ease of exposition and

because of limitations imposed by the measurement device

that is used in the experimental demonstration, we will use

a single impedance measurement in this paper.

The framework for temperature estimation given by

(4) is based on the impedance Z of a single battery cell, ie,

Z ∈ ℂ is a complex scalar. In case a battery pack of N cells

in series is considered, as schematically depicted in

Figure 1, the impedance Z is a frequency-response matrix

that satisfies

V 1 fð Þ
.
.
.

VN fð Þ

2

6
6
4

3

7
7
5
=

Z11 f ,T,SoCð Þ � � � Z1N f ,T,SoCð Þ
.
.
.

.
.

.
.
.
.

ZN1 f ,T,SoCð Þ � � � ZNN f ,T,SoCð Þ

2

6
6
4

3

7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

=Z f ,T,SoCð Þ

I1 fð Þ+D fð Þ
.
.
.

IN fð Þ+D fð Þ

2

6
6
4

3

7
7
5
,

ð6Þ

where Vn(f ) and In(f ), n ∈{1, …, N} are the output voltages

and input currents, respectively, of cell n and Zmn(f ) are

the frequency-response functions from cell n to cell m. The

diagonal terms in Z represent the cell impedances as used

in the previous study,7 and the off-diagonal terms represent

the crosstalk impedances from cell to cell that are caused

by the inductive coupling between cells; see Raijmakers

et al.20 The term D(f ) represents the disturbance induced

by (dis)charging the battery. In this paper, we assume that

the battery pack consists of N cells, which are connected in

series and placed adjacent to one another. Therefore, the

same current D(f ) flows through each cell in the battery

pack as shown in Figure 1. However, the methodology in

this paper is not limited to series connections; it can also

be used for any pack topology with parallel and/or series

connections. In case of a parallel connection, D(f ) will

be divided over the parallel branches of the battery

pack. Consequently, instead of the entire (dis)charge

current D(f ) flowing through the battery cells (and dis-

turbing the impedance measurements), the pack current

D(f ), divided by the number of parallel branches, will

flow through the parallel-connected cells.

To assess the quality of a set of the temperature esti-

mates T̂ i

� �k

i=1
with respect to the actual temperature T,

we will employ the notion of (sample) MSE given by

MSE T̂
� �

= 1
k

Pk
i=1 T̂ i−T

� �2
. Furthermore, we will express

the estimation quality in terms of the (sample) bias

b T̂,T
� �

and the (sample) variance Var T̂
� �

of the estimate,

given by

b T̂
� �

=Mk T̂
� �

−T and Var T̂
� �

=
1

k

Xk

i=1
T̂ i−Mk T̂

� �� �2
,

ð7Þ

where Mk T̂
� �

= 1
k

Pk

i=1

T̂ i is the sample mean of T̂ . Note

that the (sample) SD σ T̂
� �

satisfies σ
2 T̂
� �

=Var T̂
� �

.

Therefore, MSE can be written as the sum of the variance

and the squared bias of the estimator29 as

MSE T̂
� �

=Var T̂
� �

+ b T̂
� �� �2

: ð8Þ

2.2 | Experimental setup

The experimental setup used in this paper is shown in

Figure 2A. The setup consists of two rectangular pris-

matic nickel-manganese-cobalt (NMC) Li-ion cells,

where the cells are closely matched in terms of capacity

(ie, 23.26 Ah for cell 1 and 23.34 Ah for cell 2) and where

each cell is connected to a single-cell supervisor (SCS)

designed by NXP Semiconductors. The SCS draws a

FIGURE 1 Diagram showing the currents and voltages in an

N-cell battery pack, subject to electrochemical impedance

spectroscopy (EIS) measurements per cell with the single-cell

supervisor (SCS)
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sinusoidal current I(f ) with a DC component of −300 mA

and an amplitude of 100
ffiffiffi
2

p
mA (with a specified fre-

quency f ) from the cell and subsequently measures the

induced voltage V (f ). Subsequently, the impedance of

cell n is obtained by using Zn(f ) = Vn(f )/In(f ) with n ∈{1,

2}.2 This implies that the SCS of cell 1 will draw a current

I1(f ) and measure the voltage V1(f ), whereas the SCS of

cell 2 will draw a current I2(f ) and measure the voltage

V2(f ). It should be noted that the SCS uses a single-

frequency sinusoidal current as an excitation signal for the

impedance measurements. The measurement frequency

can be selected by the user; however, the amplitude and

measurement time of the excitation signal are fixed. More-

over, note that the SCS is a passive measurement device,

ie, the sinusoidal excitation signal is generated by

switching a resistor in parallel with the battery cell using a

pulse-density–modulated switching signal of a sine

wave.9,17 In order to obtain a sine wave perturbation using

the passive circuit, the aforementioned DC component is

needed. Consequently, the nonzero DC component of the

excitation signal of the SCS causes a slight discharge of the

cell under test. Note that this DC component would not be

needed if an active current is used to generate the current

perturbation for the impedance measurements (and conse-

quently, there will be no discharge of the cell during the

measurements). However, the reason for using the passive

circuit is that it was possible to reuse the passive balancing

electronics already present on the chip, ie, no additional

hardware was needed. Consequently, adding the function-

ality of impedance measurements does not increase the

cost of the chip. Moreover, using the passive approach

with the DC component also yields useful results in terms

of impedance measurements.

The accuracy of the SCS measurements can be

characterised by the SDs σRe and σIm of the real and imagi-

nary part of the impedance measurements, respectively. In

Figure 2B, the SDs of the impedance measurements are

depicted as a function of frequency for the real and imagi-

nary part of Z in blue and red, respectively. Note that this

SD is a property of the measurement device, eg, Figure 2B

shows that at f = 1000 Hz, the total impedance can be

measured with σ = ±14 μΩ. When analysing the accuracy

of impedance-based temperature estimation, this SD

should be taken into account. In our previous study,7 this

has been done by means of the simplified assumption of a

frequency-independent SD of σ = ±14μΩ, based on the

spread of the impedance measurements. However, a

frequency-dependent analysis (with averaging over T and

SoC) of the measurement points results in the frequency-

dependent SD as shown in Figure 2B, which will be used

in this paper. It should be noted that a larger SD on the

measured impedance does not necessarily imply a larger

SD on the estimated temperature, since this depends on

(A) (B)

FIGURE 2 Experimental setup. (A) Two-cell setup used for impedance measurements. (B) SD of the measured battery impedance as a

function of frequency f [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Nyquist plot of battery impedance Z11 of cell 1 at

SoC = 60% for f = 10 Hz to f = 5 kHz. SoC, state-of-charge [Colour

figure can be viewed at wileyonlinelibrary.com]
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the sensitivity of the battery impedance with respect to

temperature at a certain frequency.7

In this paper, the temperature estimation is always

performed while the pack is under thermal equilibrium

(ie, no evolution of temperature during impedance mea-

surements) since it is necessary to know the actual bat-

tery temperature T in order to calculate the MSE of

temperature estimation and to perform modelling experi-

ments. However, impedance-based temperature estima-

tion can be used when temperature gradients are present

in the battery cell.9,12,16 For temperature estimation mea-

surements, the two cells are kept inside a Vötsch VT4002

temperature chamber to ensure that both cells are at a

controlled temperature and that no temperature gradi-

ents are formed in the pack. In order to analyse the effect

of (dis)charge currents on temperature estimation, a

KEPCO BOP 20-20 M bipolar operational power supply

and amplifier is used to generate the actual (dis)charge

currents in the range [−20A, 20A]. Using the experimen-

tal setup, the temperature dependency of the battery

impedance can be characterised, as shown in Figure 3,

where the Nyquist plot of cell 1 is depicted for different

temperatures and frequencies at SoC = 60%.

Finally, it is important to note that the two-cell setup

in Figure 2A is used in this paper to develop a proof of

concept for the extension of impedance-based tempera-

ture estimation towards battery packs. On the basis of the

results presented in this paper, the next steps in research

and validation (eg, using larger size battery packs) can be

taken to develop the method to a more mature state.

3 | CROSSTALK

In this section, we will develop a model for crosstalk in

battery packs. The existence of crosstalk was first shown

by Raijmakers et al,20 and we will briefly summarise these

results. Then, as an extension to the study by Raijmakers

et al,20 the influence of SoC and T on crosstalk behaviour

is investigated.

3.1 | Background on crosstalk behaviour

To show the influence of crosstalk on EIS measurements,

let us consider the setup in Figure 2A, when a current of

the same frequency f is drawn from both cells simulta-

neously and when both cells are at the same temperature

T and SoC. In this case, an offset is observed in the mea-

sured impedance, when compared with the standalone

impedance of each cell at the same frequency.20 This off-

set is caused by the fact that the “perceived impedance”

Z2
? from I2(f ) to V2(f ), ie, V2(f ) = Z2

?(f )I2(f ), is given by

Z?

2 fð Þ=Z22 fð Þ+Z21 fð Þ I1 fð Þ
I2 fð Þ , ð9Þ

which is not equal to the actual impedance Z22(f ) when

I1(f ) 6¼ 0.

This effect is visible in Figure 4, where the measured

cell voltage for cell 2, ie, V2(f ), is shown for multiple fre-

quencies and for three different measurement conditions.

Namely, the dark-blue circles depict the measured V2(f )

in the absence of crosstalk interference from cell 1, ie,

I2(f ) 6¼ 0 while I1(f ) = 0. The cyan pluses in Figure 4

depict V2(f ) for the case where an AC current I1(f ) has

been drawn from cell 1, while I2(f ) = 0. Since the mea-

sured voltage V2(f ) 6¼ 0, this indicates that crosstalk

between the two cells is present. Finally, the green squares

in Figure 4 depict the measured voltage V2(f ) for the case

where an AC current has been drawn from both cells

simultaneously, ie, I1(f ) 6¼ 0 and I2(f ) 6¼ 0. This measure-

ment, which is influenced by crosstalk, differs considerably

from the measurement without crosstalk (ie, the dark-blue

circles). This effect is more pronounced for higher frequen-

cies as is explicitly indicated in Figure 4 for frequencies of

2.84 and 5 kHz. This suggests that crosstalk will have a

more deteriorating effect on the accuracy of impedance-

based temperature estimation when using higher measure-

ment frequencies. Nevertheless, even when using lower

measurement frequencies, crosstalk may still cause the

impedance-based temperature estimates to be inaccurate.

The same phenomenon is observed for Z1
?(f ). Note that,

for the measurements in Figure 4, the cells were not elec-

trically connected to each other, although the crosstalk

would be the same if they were. The presence of crosstalk

interference means that the off-diagonal terms in Z(f ) in

(6) (ie, the crosstalk impedances) are nonzero and hence

need to be considered in EIS measurements, which can be

FIGURE 4 Example of the offset in measured voltage of cell

2, induced by crosstalk interference from cell 1 at multiple

frequencies and in three different cases. Adjusted from Raijmakers

et al20 [Colour figure can be viewed at wileyonlinelibrary.com]
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done by using a model of the crosstalk behaviour as devel-

oped by Raijmakers et al.20

3.2 | SoC and T dependency of crosstalk

To effectively compensate for crosstalk in an impedance-

based temperature estimation method, it is also necessary to

investigate the dependence of crosstalk on temperature

T and SoC of the batteries, which has not been done by

Raijmakers et al.20Therefore, new impedancemeasurements

have been performed with the two-cell setup as depicted in

Figure 2A, which is the same setup that has been used by

Raijmakers et al.20 In particular, the elements of the

frequency-response matrix Z(f, T, SoC) from (6) with N = 2

have been approximated by performing L = 64 impedance

measurements at every grid point in f, T, and SoC so as to

mitigate the effect of the measurement noise v (more details

of the impedancemodel will be introduced in Section 5).

The results are shown in Figure 5 by means of Bode

plots of the individual cell impedance Z11 and the

crosstalk impedance Z12 (note that the scaling of the axis

in Figure 5A,B is equal, as well as the scaling of

Figure 5C,D. It should be noted that the impedance Z22 is

similar to Z11 and Z21 is similar to Z12. Figure 5A,B shows

the dependence on T for Z11 and Z12, whereas Figure 5C,

D shows the dependence on SoC. In Figure 5A, it can be

seen, as expected from performing impedance-based tem-

perature estimation, that the individual cell impedance

Z11 depends on temperature T. This can also be observed

from Figure 3, where the measured Z11 is shown in a

Nyquist plot. The crosstalk impedance Z12 is, however,

independent of temperature. Regarding the dependency

on SoC, Figure 5C shows that the individual cell imped-

ance slightly depends on SoC.7 Similar to being indepen-

dent of temperature, the crosstalk impedance in Figure 5D

is also independent of SoC. This allows the matrix Z in (6)

to be simplified by using the fact that the off-diagonal

(crosstalk) terms depend neither on SoC nor on tempera-

ture T. This also simplifies temperature estimation in the

presence of crosstalk.

4 | (DIS)CHARGE CURRENTS

In this section, we will discuss the inclusion of (dis)

charge currents D(f ) in the temperature estimation

method, as was indicated in (6). Incorporation of D(f ) in

(A) (B)

(C) (D)

FIGURE 5 Influence of temperature T and state-of-charge (SoC) on Z(f ) at SoC = 60% and T = 30�C for the top and bottom plots,

respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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the temperature estimation is relevant, because in real

battery applications, impedance-based temperature esti-

mation needs to be performed while the battery is used,

ie, when D(f ) 6¼ 0. The (dis)charge current D(f ) is flowing

through each cell in addition to the current Ii(f ) drawn

by the EIS measurement and will affect the measured

voltages Vi(f ), as can be seen from (6). This will act as a

disturbance in the EIS measurements and will result in

inaccurate EIS measurements. As mentioned in the intro-

duction of this paper, it is not possible to synchronise the

impedance measurements with the measurement of the

(dis)charge current (because of limitations of the mea-

surement device). Consequently, the effect of the (dis)

charge current on the impedance measurement cannot be

compensated for in this particular case. Still, inclusion of

the (dis)charge current in the framework for temperature

estimation is useful since it can also be used to analyse

the effect of the (dis)charge current on the temperature

estimation. Therefore, in this paper, the inclusion of (dis)

charge current will be used as a tool for analysis so as to

arrive at an optimal temperature estimation method,

despite the (uncompensated) presence of the disturbance

caused by the (dis)charge current. However, for future

use (in case of synchronisation of the measurements), the

inclusion of the (dis)charge current in the estimation

framework may be used to compensate for the effect of

this (dis)charge current on the estimation accuracy.

It should be noted that the (dis)charge current can

interfere with the EIS measurement from two perspec-

tives. From a signal-integrity perspective, the (dis)charge

current and the corresponding frequency content of this

signal can interfere with the measured battery voltage,

which is a measurement artefact. From an electrochemi-

cal perspective, on the other hand, (relatively large) (dis)

charge currents will drive the battery out of the electro-

chemical equilibrium, causing the impedance to change,

which can be seen as a model artefact.30,31 In this paper,

we consider the measurement artefacts on the EIS mea-

surement introduced by the (dis)charge current. Incorpo-

rating the model artefacts in the analysis can be seen as

an extension and a valuable next step to this work. The

relation between the impedance and the relaxation

period after (dis)charge has been shown in previous stud-

ies.30,31 Subsequently, Zhu et al32 have used this relation

to correct the measured impedance under operating con-

ditions for this electrochemical effect in order to perform

impedance-based temperature estimation.

In this section, we will develop two methods to incor-

porate an estimate of D(f ), denoted by D̂ fð Þ, in the tem-

perature estimation method of Section 2.1. In particular,

we will consider the (deterministic) case where the (dis)

charge current can be measured synchronously with the

impedance measurements and, therefore, can be used to

compensate the measured Z(f ) for the effect of D(f ). This

allows for constructing a deterministic model of D(f )

using the measured (dis)charge current. We will also con-

sider the case that reflects the experimental setup of this

paper. Namely, the (dis)charge current cannot be mea-

sured synchronously with the impedance measurements

and, therefore, the measured current is not suitable for

directly compensating Z(f ). In this case, we model D(f )

stochastically as a random signal, which allows us to ana-

lyse the (deteriorating) effect of D(f ) on the temperature

estimation.

4.1 | Deterministic modelling

Let d(t) denote the (dis)charge current during a time win-

dow t∈ t̂, t̂+ τ

� 	
in which the EIS measurement takes

place, where τ denotes the measurement time. An exam-

ple of a typical (dis)charge current can be found in

Figure 6A, where an actual measured (dis)charge current

from a drive test is shown, which has been generated by

an acceleration-deceleration cycle with an electric vehicle

over a period of 120 seconds with a sampling frequency

of fs = 100 kHz. In this figure, the negative current can be

seen as current driving the vehicle and the positive cur-

rent as current flowing into the battery during regenera-

tive braking. Because of the relatively short periods of

charge and discharge in Figure 6A, in combination with

the fact that the (dis)charge current is approximately

zero-mean over this period, the SoC of the battery pack

will be (approximately) constant for this cycle. It is

important to note that this relatively short driving cycle

has been selected in order to obtain the properties of the

(dis)charge current of an EV since the goal of our study is

to extend the method of impedance-based temperature

estimation towards its application in battery packs.

Namely, it has already been shown in previous studies

that impedance-based temperature estimation can be

applied to more general driving cycles with relatively

large changes in SoC.9,26

The current signal D(f ) is given by the Fourier trans-

form of the signal d(t). As an estimate of this signal D(f ),

we can take

D̂ fð Þ=
ð t̂+ τ

t̂

d tð Þe−2πjftdt, ð10Þ

meaning that D fð Þ≈D̂ fð Þ can be used in the temperature

estimation method and accounts for the effect of (dis)

charge current in the temperature estimation. Note that

(10) can be approximated as a fast Fourier transform.

This, however, requires that d(t) can be measured in real

BEELEN ET AL.



time and synchronously with the EIS measurements.

This might be difficult to realise in practice and currently,

the setup with the SCS of Figure 2 is limited to measuring

the impedance and (dis)charge current separately (ie, not

synchronously). Therefore, we will also consider a sto-

chastic approach that can be used to analyse the effect of

the (dis)charge current on the temperature estimation.

4.2 | Stochastic modelling

In case the (dis)charge current d(t) cannot be measured in

real time, or not synchronously with the EIS measure-

ments, we can model the (dis)charge current as a random

variable in the frequency domain for the purpose of ana-

lysing the effect of this current on the temperature estima-

tion. To be more precise, we model D(f ) as a zero-mean

Gaussian random variable with frequency-dependent vari-

ance σ
2(f ).3 The stochastic model D̂ fð Þ cannot be used to

compensate for D(f ), since the model does not capture D

(f ) in a certain time window t∈ t̂, t̂+ τ

� 	
synchronously

with the EIS measurements. However, by modelling the

signal as a random variable in the frequency domain, it is

possible to analyse the effect of (dis)charge current on

temperature estimation and to quantify the average error

on the temperature estimation caused by the pack cur-

rent. Namely, it can be stated that the variance σ
2(f ) of

this random variable is equal to the power spectral den-

sity (PSD) of the random signal d(t) and can be inter-

preted as the representation of d(t) in the frequency

domain; see Childers and Miller.33,chapter10 The PSD can

be computed efficiently using, eg, Matlab using a realisa-

tion of d(t) under the assumption that d(t) is a stationary

random variable. For the (dis)charge current given in

Figure 6A, the corresponding PSD is given in Figure 6B,

in which we indicate the upper-peak envelope of the PSD

in red to prevent the analysis to prefer local minima in

the spectrum. This envelope will be used to characterise

D(f ) and thus the variance σ
2(f ) per frequency. This will

be used to analyse the effect of the (dis)charge current on

the temperature estimation in this paper.

5 | TEMPERATURE ESTIMATION
IN PRESENCE OF CROSSTALK AND
(DIS)CHARGE CURRENTS

Using the results of modelling crosstalk and (dis)charge

current disturbances from the previous two sections, the

temperature estimation method given by (4) in Section 2.1

is extended as follows. The perceived battery impedance

Z?

m of cell m in an N-cell battery pack in the presence of

crosstalk and (dis)charge currents is now of the form

Z?

m f ,T,SoCð Þ= Vm f ,T,SoCð Þ
Im f ,T,SoCð Þ

=
XN

n=1

Zmn f ,T,SoCð ÞIn fð Þ+D fð Þ
Im fð Þ


 �

,

ð11Þ

which follows from (6). In (11), the (dis)charge current

term D(f ) depends on the instantaneous (dis)charge cur-

rent and is a random variable in this study. Note that it is

also possible to take a deterministic approach as shown in

Section 4.1, if the measurement of the (dis)charge current

can be synchronised with the impedance measurements.

The crosstalk phenomenon, however, is deterministic and,

hence, the model can be extended to include the crosstalk

terms, which allows the estimator to compensate for

crosstalk interference. Now, the impedance model Ẑm :

(A) (B)

FIGURE 6 Pack-current measurement of an electric vehicle. (A) Pack current as a function of time, measured in a road test of an

electric vehicle. (B) Power spectral density (PSD) of pack current (blue) and upper-peak envelope (red) [Colour figure can be viewed at

wileyonlinelibrary.com]
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R
3 !ℂ of the perceived cell impedance Z?

m of cell m is

given by

Ẑm f r ,Tr ,SoCrð Þ=
XN

n=1

Ẑmn f r ,Tr ,SoCrð Þ In f rð Þ
Im f rð Þ ð12aÞ

by averaging several measured impedances as

Ẑmm f r ,Tr ,SoCrð Þ= 1

L

XL

i=1

Zmm f r ,Tr ,SoCrð Þ+ vi, ð12bÞ

Ẑmn f rð Þ= 1

L

XL

i=1

Zmn f rð Þ Im f rð Þ
In f rð Þ + vi n 6¼m, ð12cÞ

where L ∈ N is the number of measurements taken for

each combination of grid points fr, Tr, and SoCr, and, as

mentioned previously, no compensation for D(f ) will be

applied and, therefore, it is not considered when con-

structing Ẑm in (12a). We can model the battery imped-

ance (ie, the diagonal entries in Z in (6)) by taking

D(f ) = 0 and In(f ) = 0 for all n 6¼m and subsequently

measure the crosstalk interference (ie, the off-diagonal

entries in Z in (6)), while still taking D(f ) = 0, ie, not (dis)

charging the battery. Although the cells in the pack are

matched, the measured impedance of the battery cells can

vary, eg, because of slight differences in the mounting or

wiring of the measurement equipment. Therefore, an

impedance model of every cell m should be constructed, in

order to prevent modelling errors from affecting the tem-

perature estimation. Note that, based on the results in

Section 3, we use that Zmn only depends on frequency for

n 6¼m. Recall that the model Ẑm f r ,Tr ,SoCrð Þ is defined as

a lookup table at the selected grid points. Using interpo-

lation to obtain values in between grid points, the model

in (12) can be considered as Ẑm f ,T,SoCð Þ (ie, a lookup-

table model with built-in interpolation function).

The modelled impedance Ẑm from (12) and the mea-

sured battery impedance, which is of the form of (11) with

additive measurement noise, ie, Zmeas
m =Zm f ,T,SoCð Þ+ v,

are now substituted into the nonlinear least-squares esti-

mator of (4) to estimate the temperature of each cell

in the pack. It should be noted that the model in

(12) illustrates the fundamental difference between

impedance-based temperature estimation at a single-cell

level or in a battery pack. Namely, for temperature esti-

mation in a single-cell application, one can construct a

lookup table that directly reads the impedance model Ẑm

as constructed with (3), whereas temperature estimation

for a battery pack involves constructing Ẑm using

(12) with a lookup table that reads all elements Zmn of

the frequency-response matrix given in (6). Also note

that, although we based the model in (12) on D(f ) = 0,

D(f ) will be included in the accuracy analysis as a zero-

mean random Gaussian variable in Zmeas
m in order to eval-

uate the performance of the estimator in presence of (dis)

charge currents.

6 | ACCURACY ANALYSIS

In this section, Monte Carlo simulations are performed

in order to analyse the accuracy of the extended method

for temperature estimation in terms of the MSE, for dif-

ferent settings of f and α. The analysis is performed for a

range of possible battery temperatures and SoC values

under different conditions, such as the presence of

crosstalk and (dis)charge-current disturbances. The anal-

ysis can then be used to arrive at a set of values for f and

α, which yield the most accurate temperature estimate T̂.

6.1 | Setup of the analysis

The experiments are conducted on the setup in Figure 2A,

which consists of N = 2 cells and corresponds to the

frequency-response matrix from (6), given by

Z f ,T,SoCð Þ= Z11 f ,T,SoCð Þ Z12 fð Þ
Z21 fð Þ Z22 f ,T,SoCð Þ

� 


: ð13Þ

The impedance models Ẑmm and Ẑmn of the elements

Zmm and Zmn of (13) can be obtained through (12) for

TABLE 1 Measurement settings for constructing Ẑ

Temperature T −20�C, −10�C, 0�C, +10�C, +20�C,

+30�C, +40�C, +50�C

Frequency f 25 log-spaced f: 10 Hz ≤ f ≤ 5 kHz

SoC values 20%, 40%, 60%, 80%

Abbreviation: SoC, state-of-charge.

TABLE 2 Settings for Ẑm and Zmeas
m in Monte Carlo

simulations at SoC = 60%

Case A Case B Case C Case D

Ẑm Im 6¼ 0 Im 6¼ 0 Im 6¼ 0 Im 6¼ 0

In = 0 In = 0 In = 0 In 6¼ 0

Zmeas
m Im 6¼ 0 Im 6¼ 0 Im 6¼ 0 Im 6¼ 0

In = 0 In 6¼ 0 In = 0 In 6¼ 0

D(f ) = 0 D(f ) = 0 D(f ) 6¼ 0 D(f ) 6¼ 0

Abbreviation: SoC, state-of-charge.

BEELEN ET AL.



N = 2, using the measurement settings in Table 1 for f,

T and SoC. For the purpose of this modelling procedure,

the number of measurements for a certain operating

point in f, T and SoC is taken to be L = 64. The number

of EIS measurements L that can be taken at each temper-

ature is limited by the rate of discharge of the battery that

occurs during the impedance measurements (as the mea-

surement current of the impedance measurements has a

nonzero DC component). Therefore, L = 64 is assumed to

be sufficiently large to average out measurement noise v,

yet small enough to not affect the SoC of the batteries sig-

nificantly. For the accuracy analysis, the approach is the

same as for the Monte Carlo analysis in our previous

work.7 Recall that, for the analysis and validation, the

two-cell battery pack is used since the aim of this study is

to develop a solid proof of concept for developing the

method of impedance-based temperature estimation

towards its application in battery packs. The extension to

larger battery packs can be seen as an important next step

in the development of the method.

The accuracy analysis consists of four cases, where

A. Neither crosstalk nor (dis)charge currents are present

in the temperature estimation.

B. Crosstalk is present but not accommodated for in the

temperature estimation.

C. (Dis)Charge currents are present, but not accommo-

dated for, and crosstalk is not present.

D. Both crosstalk and (dis)charge currents are present,

and crosstalk is accommodated for in the temperature

estimation.

Recall that the case where both crosstalk and (dis)

charge current are present and both accommodated for

in the temperature estimation is not considered, since

the (dis)charge current cannot be measured synchro-

nously with the battery impedance using the SCS. For

each case, different combinations of measurement condi-

tions (ie, Zmeas
m ) and models (ie, Ẑm ) are considered,

which are defined by the settings in Table 2. The model

Ẑm for each case is now constructed using the settings in

Table 2 and the modelled elements of Z in (13), ie, the

impedance models Ẑmm and Ẑmn in (12b) and (12c),

respectively. For example, in case A, where we simulate

impedance-based temperature estimation without crosstalk

interference or (dis)charge currents (ie, as presented in our

previous study7), Table 2 reads that the modelled imped-

ances for N = 2 cells, ie, Ẑm with m = {1, 2}, are con-

structed with I2(f ) = 0 for Ẑ1 and I1(f ) = 0 for Ẑ2 . In

other words, Ẑ1 and Ẑ2 are the single-cell impedance

models as used in our previous study7 (which is also true

for cases B and C). For each case, this results in a model

Ẑm , which comprises a three-dimensional lookup table

of the impedance of each cell with a temperature-

frequency-SoC grid. A finer temperature-frequency-SoC

grid is further obtained by cubic spline interpolation. Simi-

larly, the measured impedances Zm
meas are obtained with

the settings from Table 2. As mentioned previously, the

influence of (dis)charge current D(f ) can also be evaluated

by modelling D(f ) in a stochastic manner; see Section 4.2.

For cases A and B, however, D(f ) is not considered, and

therefore, D(f ) = 0 in Table 2.

On the basis of the model Ẑ of the impedance Z in

(13), and using the estimator in (4), Monte Carlo simula-

tions (see, eg, Rubinstein and Kroese34) have been per-

formed to evaluate the estimation accuracy using

measurement noise v with a SD σ that depends on fre-

quency and is obtained from measurement data; see

Figure 2B. For the simulations, SoC = 60% is chosen and

thus used as a set-point in the impedance model Ẑm in

(12). However, even if a different SoC is chosen, the anal-

ysis method would remain the same. The input distribu-

tion of measured impedance values for the Monte Carlo

simulations (ie, Zmeas
m for evaluation in (4)) is generated

by taking the sum of the modelled impedance Ẑm and a

distribution of the measurement noise v. Similar to the

methodology used in our previous work,7 the number of

Monte Carlo simulations is selected as NMC = 104. This

ensures a confidence bound of greater than or equal to

95% of all estimates being within ±0.2�C.29 For more

details on the Monte Carlo simulations, see Beelen et al.7

Note that the analysis in this section is performed for

only one of the cells in the two-cell battery pack. Because

of symmetry, the results of the estimation method would

be similar (yet not the same because of small differences

in the battery impedance) for the other cell and is there-

fore not repeated in the following analysis. Also, recall

that the influence of crosstalk and (dis)charge current on

the temperature estimation is analysed using the models

of these disturbances as presented in Sections 3 and 4,

respectively. For the experimental validation with the

two-cell battery pack in Section 7, the synthesised estima-

tion method (with the f and α found in this analysis) will

be subject to actual crosstalk and (dis)charge current.

Finally, a temperature range from −10�C to 40�C will be

used for both the analysis in this section as well as the

validation in Section 7. This range has been chosen so as

to ensure a safe test environment for providing a proof of

concept for the proposed method of impedance-based

temperature estimation in battery packs. Moreover, this

temperature range is a reasonable assumption for the

battery temperatures encountered during (normal) oper-

ation of the battery cell and has been used in a number

of other studies as well.7,12,16 Nevertheless, for future

research and validation, the temperature range can be

extended as the principle of impedance-based temperature
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estimation has been shown to be valid for a wider range of

temperatures.8,9,15

6.2 | Temperature estimation without
crosstalk

In the case of temperature estimation in the absence of

crosstalk and (dis)charge currents, the simulation settings

used for generating the models and the measurements

are described in Table 2, case A. The resulting MSEs over

a range of f, α, and T are shown in the first column of

plots in Figure 7 and are in agreement with the results

found in our previous study,7 although the analysis in this

case is performed on a different cell type. It can be seen

that the MSE increases towards higher frequencies. More-

over, this effect becomes more pronounced at higher tem-

peratures. This indicates that the sensitivity of the battery

impedance with respect to temperature decreases towards

higher temperatures and higher frequencies. This effect

has also been observed in our previous study7 and corre-

sponds to the fact that low frequencies for impedance-

based temperature estimation are preferable.11,12,15 In

terms of settings for f and α, the results of case A indicate

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

(M) (N) (O) (P)

FIGURE 7 Mean-square estimation error (MSE) at different temperatures (in ascending order from top to bottom) and SoC = 60% as a

function of f and α for case A (first column), case B (second column), case C (third column), and case D (fourth column). The colour in each

plot corresponds to the colour bar representing MSE expressed in �C2. SoC, state-of-charge [Colour figure can be viewed at

wileyonlinelibrary.com]
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that there is a relatively large range of values for f and α

that yield similar performance in terms of the MSE of tem-

perature estimation.

6.3 | Temperature estimation with
crosstalk

For case B, the analysis from the previous case, where no

crosstalk was present, is repeated with the same imped-

ance models Ẑ1 and Ẑ2 . However, the measured imped-

ances Z1
meas and Z2

meas are now obtained with both

I1(f ) 6¼ 0, I2(f ) 6¼ 0, and D(f ) = 0 as denoted in Table 2,

case B. In other words, the impedance measurements are

disturbed by crosstalk. However, since Ẑ1 and Ẑ2 are the

same as for case A, this interference is not taken into

account in the temperature estimation. In other words,

no compensation for the crosstalk interference is applied.

The resulting MSE plots are shown in the second column

of plots in Figure 7. As expected, the MSE increases with

higher frequencies since the crosstalk becomes more

dominant at higher frequencies as shown by Raijmakers

et al.20 For the selection of f and α, these results imply

that we are forced to choose a lower f such that the

crosstalk interference (if not compensated for) has lim-

ited (or no) effect on the temperature estimation.

6.4 | Temperature estimation with (dis)
charge currents

Up to this point, we have seen that low frequencies are

preferably used for temperature estimation. In practice,

however, dynamic (dis)charge currents will be present in,

eg, automotive applications. We will now investigate how

this phenomenon will affect the temperature estimation.

The first case (ie, case A without crosstalk) is now

repeated, but the (dis)charge current D(f ) 6¼ 0 and D(f ) is

used in Zmeas
m as stochastically defined in Section 4.2 (ie, a

disturbing (dis)charge current is added to the simula-

tion). Note that the phase shift between the measured

voltage and the (dis)charge current varies; therefore, no

phase information can be extracted from the frequency

spectrum of the (dis)charge current. Hence, for D(f ), the

phase is obtained from a set of normally distributed

pseudo-random numbers. The resulting MSE plots are

shown in the third column of plots in Figure 7. It can be

observed that the MSE is larger for lower frequencies,

since also the amplitude of the (dis)charge current is

larger at lower frequencies as shown in Figure 6B (ie, the

(dis)charge current affects the temperature estimation). It

can also be observed that the MSE is larger for α closer to

1. This indicates that the (dis)charge currents have a

larger influence on the real part of the impedance, which

has also been found by Koch and Jossen.16 In conclusion,

this analysis indicates that, in case of (dis)charge cur-

rents, higher frequencies should be chosen to obtain the

most accurate temperature estimate.

6.5 | Compensating for crosstalk

In this case, the Monte Carlo simulations are performed

by including both crosstalk interference and (dis)charge

currents. This means that Z1
meas and Z2

meas are measured

with both I2(f ) 6¼ 0, I1(f ) 6¼ 0, respectively, and D(f ) 6¼ 0

as denoted in Table 2. This means that both crosstalk and

(dis)charge currents interfere with the impedance

measurements and thus affect the impedance-based tem-

perature estimation. Since crosstalk mainly affects the

high-frequency region (see case B) and (dis)charge cur-

rents affect the low-frequency region (see case C), this

suggests that it may not be possible to find suitable set-

tings for f and α if the frequency ranges in which these

disturbances affect the temperature estimation overlap.

Unfortunately, these frequency ranges do indeed (slightly)

overlap as can be seen from (visually) comparing the dark

red areas of cases B and C in Figure 7 (see Section 6.6 for

more details). Fortunately, it is possible to compensate for

the effect of the crosstalk interference by using the crosstalk

model as introduced in Section 3. Therefore, in contradic-

tion to the previous cases, crosstalk models are also included

when constructing Ẑ1 and Ẑ2 in (12), ie, the terms Ẑmn in

(12) are no longer zero. The resulting MSE plots are

shown in the fourth column of plots in Figure 7. Since

the crosstalk is captured by the models, the MSE plots

are similar to the case where crosstalk is absent, but with

the added disturbance of (dis)charge currents (ie, case C),

which causes the MSE to be larger at low frequencies.

6.6 | Selection of f and α

The plots in Figure 7 can be used to find the parameters

f and α that yield the smallest MSE for temperature esti-

mation in certain conditions. The plots show that, gener-

ally, for all four cases, the MSE is larger at high

temperatures compared with that in lower temperatures.

This is in agreement with the fact that the sensitivity of

the battery impedance decreases towards higher tempera-

tures. Therefore, we can use the MSE at T = 40�C (ie,

Figure 7M-P) for selecting f and α for each case, since it

gives the worst-case MSE. For example, consider the case

where there is no crosstalk and where no (dis)charge cur-

rents are injected in Figure 7M. The smallest MSE is

found around f = [100, 300] Hz and α = .5, which is also
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a favourable setting for lower temperatures, ie, Figure 7A, E, I.

The results for a similar analysis for the other cases can

be found in Table 3, which shows that α = .5 provides the

best results in all four cases. Alternatively, for all four

cases, the MSE can be depicted as a function of frequency

f, while taking α= .5. This is depicted in Figure 8 and also

allows the selection of a frequency f that results in the

smallest MSE for each case.

Moreover, Figure 8 gives an interesting insight in how

the choice of measurement frequency f is affected by the

type of measurement case that is considered. Namely, in

the absence of (dis)charge currents (ie, cases A and B),

selecting a relatively low f in the range of f = [100, 300] Hz

results in the smallest MSE, where it should be noted that

for very low f, the MSE increases again because of the

measurement noise of the SCS as depicted in Figure 2B.

However, in the presence of (dis)charge currents (ie, cases

C and D), the preferred f is pushed towards higher fre-

quencies, because of the fact that the amplitude of the

PSD in Figure 6B is larger for lower frequencies. More pre-

cisely, since there is no compensation for the (dis)charge

current in this work and the disturbance caused by the

(dis)charge current is more pronounced for relatively low

frequencies, a higher frequency should be chosen so as to

achieve a smaller MSE for the temperature estimation.

Note that there is no difference between cases C and D in

this reasoning since in case C, crosstalk is not present,

while in case D, crosstalk is present but compensated for

in the temperature estimation. Also, the preferred f is

influenced by the low sensitivity of the battery impedance

with respect to temperature at higher frequencies and by

crosstalk, if it is not compensated for as shown in case B.

It is important to note that crosstalk compensation is

indeed necessary in this particular case (ie, with this type

of battery cell, this particular experimental setup, and the

selected (dis)charge current profile). Namely, since low

measurement frequencies are affected by the (dis)charge

currents and high measurement frequencies are affected by

crosstalk interference, one might argue that there could be

a (mid-range) frequency band in between both disturbances

that is not affected and thus suitable for impedance-based

temperature estimation without crosstalk compensation.

However, comparing cases B and C in Figure 8 gives the

following interesting insight. Following the line for case C

(which is difficult to see as it is underneath the purple line

of case D for lower frequencies), starting at approximately

400 Hz, it can be seen that from a certain frequency

onwards (approximately 600 Hz), the (dis)charge current

does not affect the MSE compared with the base case

with no disturbances, ie, case A. However, at that same

frequency, the crosstalk (ie, the red line) starts to have

an effect on the MSE (and this effect becomes stronger

for higher frequencies). In other words, in this case,

crosstalk compensation is indeed necessary to arrive at

the optimal MSE in the presence of both disturbances.

In conclusion, when both crosstalk and (dis)charge-

current interference are present, a trade-off is found in

selecting f as depicted in Figure 8, case D (purple line).

Therefore, Table 3 shows the optimal design parameters.

For cases A and B, the frequency f = 133 Hz (from the

range f = [100, 300] Hz) is chosen, and for cases C and D,

f = 630 Hz is selected. Note that this analysis and the

conclusions drawn here are specific to this particular cell,

the pack arrangement, and measurement device used in

this paper. Nevertheless, the analysis framework used in

this paper is general and can be applied to other types of

TABLE 3 Optimal values of f and

α from analysis, including resulting

average MSE in simulation (Section 6)

and validation (Section 7)

avg. MSE, �C2

Analysis Case f, Hz α sim. val.

Case A. Without crosstalk 133 0.5 1.1 1.1

Case B. With crosstalk 133 0.5 1.1 1.1

Case C. With (dis)charge currents 630 0.5 2.3 4.0

Case D. With crosstalk compensated 630 0.5 2.3 3.8

Abbreviation: MSE, mean-square estimation error.

FIGURE 8 Mean-square estimation error (MSE) obtained

from simulation study as a function of frequency for each of the

four cases at T = 40�C and SoC = 60%, with α = .5. SoC, state-of-

charge [Colour figure can be viewed at wileyonlinelibrary.com]
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cells, other arrangements of battery packs, and other

measurement devices as well.

7 | EXPERIMENTAL VALIDATION

Using the optimal design choices for f and α in Table 3,

the temperature estimation method will be validated

experimentally in this section. This validation has been

performed on the two-cell battery pack of Figure 2A for

all four cases discussed in Section 6. Similar to the accu-

racy analysis in Section 6, the temperature estimation

involves solving (4) for a set of validation measurements,

using the appropriate model for each particular case,

identical to the cases and models discussed in Section 6

and denoted in Table 2. A number of Nval = 64 valida-

tion measurements have been taken for each case and

at each temperature T ∈{−10, 0, 10, 20, 30, 40}�C,
where again the cells have been maintained at

SoC = 60%. Although Nval is substantially smaller than

the number of Monte Carlo simulations NMC = 104

used in Section 6, it is sufficient for the experimental

validation. Note that the batteries have been at rest at a

particular temperature for a period of 3 hours before the

experiment, meaning that the batteries were in thermal

equilibrium when the impedance measurements were

performed.

It is important to note that the experimental valida-

tion focuses solely on the method presented in this paper,

and no comparison with other methods is included. To

the best of the knowledge of the authors, there have not

yet been any studies that have investigated the applicabil-

ity of impedance-based temperature estimation to battery

packs since the existing literature focuses predominantly

on impedance-based temperature estimation for single bat-

tery cells, typically under laboratory conditions. Therefore,

a comparison is simply not possible. For a comparison of

the existing techniques for impedance-based temperature

estimation at the single-cell level, the reader is referred to

Beelen et al.7

In Figure 9, the (sample estimates of the) bias, SD,

and MSE of the estimated temperature T̂ are depicted for

each case. For comparison, the simulation results

(obtained by the Monte Carlo simulations) of the analysis

in Section 6 are also depicted for the selected f and α. The

(average) MSE, resulting from the combination of bias

and SD as shown in (8), is denoted in Table 3.

7.1 | Temperature estimation without
crosstalk

The measurements for the case where no crosstalk is pre-

sent, together with the models Ẑ1 and Ẑ2 , as mentioned

in Section 6, and the selected α have been substituted

into (4). The results for bias and SD of the estimation are

shown in Figure 9A. The corresponding MSE as defined

in (8) is depicted in Figure 9E. The average of the MSE

(A) (B) (C) (D)

(E) (F) (G) (H)

FIGURE 9 Bias, SD (std.), and mean-square estimation error (MSE) as a function of the actual battery temperature T for cases A to D

as denoted in Table 3. Blue lines and red lines depict simulation results and validation results, respectively. (A) Case A: bias and std.

(B) Case B: bias and std. (C) Case C: bias and std. (D) Case D: bias and std. (E) Case A: MSE. (F) Case B: MSE. (G) Case C: MSE. (H) Case

D: MSE [Colour figure can be viewed at wileyonlinelibrary.com]
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over all temperatures can be found in Table 3. Overall,

both bias and SD are in agreement with the results from

the analysis in Section 6 and subsequently, also the MSE

of the validation is in agreement with the simulation.

These validation results indicate that, in this case, the

temperature can be estimated with an accuracy of ±1�C
as shown in Figure 9A. The difference between simula-

tions and measurements for both bias and SD may be

caused by modelling inaccuracies or a mismatch in SoC

in either the modelling procedure or the validation mea-

surements or both.

7.2 | Temperature estimation with
crosstalk

The results for the case where crosstalk is present, but

not compensated for in the estimation, can be found in

Figure 9B,F and Table 3. Since the selected frequency f is

low, the influence of crosstalk on T estimation is not

dominant. The results are found to be in agreement with

the analysis and similar to case A, the temperature can

be estimated with an accuracy of ±1�C as shown in

Figure 9B. Note that differences between simulation and

measurement may be due to similar influences as men-

tioned with case A.

7.3 | Temperature estimation with (dis)
charge currents

As mentioned in Section 6, the impedance measurements

for case C charge currents, ie, D(f ) 6¼ 0. As denoted in

Table 3, a higher frequency, f = 630 Hz, is used. The

results in Figure 9C show that the validation is in rela-

tively good agreement with the simulation. However, in

terms of bias, the deviation between simulation and vali-

dation is larger for higher battery temperatures. More-

over, the SD in the validation is also slightly larger than

the SD in simulation. Subsequently, this results in a

larger MSE in the validation compared with the simula-

tion as shown in Table 3 and Figure 9G. The difference

in SD between simulations and measurements, and thus

the difference in MSE, could be explained by the fact that

the true (dis)charge current is not fully captured by the

model for the (dis)charge current in the simulation. More-

over, in the (dis)charge-current model, we only consider

the effect of the (dis)charge current on the EIS measure-

ment, ie, the measurement artefact. The effect on the elec-

trochemical equilibrium of the battery and thus the effect

on the impedance itself are not considered. However, con-

sidering the correction for this effect as shown by Zhu

et al32 can be an interesting extension to this work.

Overall, the experimental validation of case C shows that

the temperature can be estimated with an accuracy of

±1.3�C in the presence of (dis)charge currents.

7.4 | Compensating for crosstalk

For this set of measurements, both (dis)charge currents

and crosstalk are present. As mentioned in Section 6, the

extended models for Ẑ1 and Ẑ2 (which incorporate

crosstalk) have been used for solving (4). The results of

the estimation are shown in Figure 9D,H. Overall, bias

and SD follow the trend observed in the analysis. Similar

to case C, in terms of bias and SD, a deviation is observed

between simulation and validation. Therefore, the MSE in

Table 3 and Figure 9H of the validation is larger than the

MSE in the simulation. The differences between simula-

tion and validation for this case may be due to similar

influences as discussed for case C. The results of the exper-

imental validation of this case show that, even when both

disturbances are present, the temperature can still be esti-

mated with relatively good accuracy of ±1�C.

7.5 | Discussion

The results of temperature estimation in Figure 9 show

that the proposed methods in Table 3, defined by means

of finding the smallest MSE in Figure 7, do not necessar-

ily minimise both bias and variance. However, even in

the presence of crosstalk interference and (dis)charge

currents (ie, case D), the proposed estimation method

yields a bias within ±1�C, as shown in Figure 9D. To fur-

ther improve the method, it is necessary to compensate

for the disturbances caused by (dis)charge currents. This

would require synchronising the pack-current measure-

ments with the impedance measurements, which is not

possible with the experimental setup used in this paper.

Still, in theory, this synchronisation could reduce the

large MSE seen at lower frequencies in Figure 7 (cases C

and D) and would allow the selection of a lower fre-

quency f. This would result in a smaller MSE for the tem-

perature estimation because of the higher sensitivity of

the impedance with respect to temperature at lower fre-

quencies. Also, improvements in modelling accuracy, eg,

considering the model artefact caused by the (dis)charge

current (see Section 4), could help to improve the accu-

racy of the temperature estimation.

Although temperature estimation in case of an

unknown SoC can be relatively accurate,7 it should be noted

that the battery SoC is assumed to be known in this paper.

However, the SoC is generally not known but estimated by

the BMS using model-based estimation algorithms.35,36 This
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will most likely introduce uncertainty on the temperature

estimate, and, therefore, it is important to employ a rela-

tively accurate SoC estimation method.37 Another aspect

that needs to be considered for further research is the per-

formance of the estimation method in the presence of tem-

perature gradients across the battery pack38,39 as well as

battery ageing.25 In particular, if the effect of ageing is not

included in the impedance model, the optimal choice for α

may not be α = .5 as selected in this paper. This has been

shown by Beelen,26,chapter 7 where ageing did occur and

predominantly affected the real part of the battery imped-

ance. Therefore, a different value for α, ie, α = 0, has been

selected in this study in order to achieve satisfactory accu-

racy of the temperature estimation in the presence of age-

ing. Alternatively, ageing may also predominantly be

present at lower frequencies, affecting the real and imagi-

nary part of the impedance.8 This may lead to a different

choice in excitation frequency, ie, avoiding frequencies at

which the impedance may be influenced by the ageing

phenomenon. A more interesting approach would be to

incorporate a model of the ageing phenomenon in the

impedance model so as to include the effect of ageing in

the estimation method. Consequently, the selection of α

and f will not be based on avoiding the influence of the

ageing phenomenon (since it has been captured in the

model), allowing for a selection of α and f that yield more

accurate temperature estimates (eg, selecting low frequen-

cies and α = .5).

Finally, the impedance-based temperature estimation

method has been validated experimentally on a two-cell

battery pack in this paper to show a proof of concept of

the extended method, thereby taking a first step towards

development of the method for application on a full-size

battery pack of, eg, an electric vehicle. On the basis of the

promising estimation results of the estimation method

with the two-cell battery pack in this study, future

research should therefore focus on developing and test-

ing the method for larger-size battery packs (eg, more

than two cells). Moreover, since the goal of this paper

was to obtain a proof of concept for extending

impedance-based temperature estimation towards its

application in battery packs, future research can signif-

icantly contribute to develop this method further, eg,

through more extensive experimental validation under

a wide variety of circumstances.

8 | CONCLUSIONS

In this paper, we have investigated the extension of

impedance-based temperature estimation towards its

application in battery packs. This has been done by

addressing two important challenges that arise when

extending the method: the disturbance caused by (dis)

charge currents and crosstalk interference between cells.

To address these challenges, firstly, we have extended

an existing framework for temperature estimation by

including the aforementioned disturbances by model-

ling these artefacts. As an extension to an existing

study,20 it has been shown that crosstalk neither

depends on temperature nor on SoC. Also, it has been

shown that (dis)charge currents can be modelled using

a deterministic as well as a stochastic approach, where

the deterministic approach should be used if the (dis)

charge current can be measured synchronously with

the impedance measurement. This was not possible

with the experimental setup is this paper, prompting

the use of the stochastic approach.

Second, we used this extended temperature estima-

tion framework to design an optimal (in the mean-

square-error sense) temperature estimation method by

analysing the effect of the disturbances on the tempera-

ture estimation in combination with the choice of the

excitation frequency. Subsequently, using this analysis,

an optimal estimation method has been synthesised.

Although the battery impedance is most sensitive to tem-

perature at low frequencies, we arrived at a trade-off

where a higher frequency is selected, which is less sensi-

tive to temperature, but where the disturbances caused

by (dis)charge currents are avoided. Overall, this yields

the most accurate temperature estimate. We have found

that, even in the presence of both (dis)charge currents

and crosstalk interference, the optimal parameters yield

good results in terms of an MSE and provide an accuracy

of ±1�C for the temperature estimation. Therefore, on the

basis of the experimental results with the two-cell battery

pack used in this paper, applicability of impedance-based

temperate estimation to real applications with full-size bat-

tery packs has come one step closer. Still, further improve-

ments such as (dis)charge current synchronisation or

crosstalk mitigation through alternate pack arrangements

should be investigated, as well as the application of the

method to a full-size battery pack and an extensive valida-

tion under a wider range of circumstances and possible

applications.
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ENDNOTES
1 Note that synchronising the measurement of current, usually mea-

sured in a separate integrated circuit, and cell voltages, usually mea-

sured by multiple stacked integrated circuits, is not trivial. It needs

to be controlled separately from a central controller using a single

serial communication bus, which also severely limits the bandwidth

with which the effect of the discharge current could be measured.

2 In the presence of (dis)charge currents, the induced voltage Vn(f )

depends not only on the measurement current In(f ) of the SCS but

also on the (dis)charge current D(f ). If D(f ) is known exactly, the

impedance of cell n can be obtained through Zn fð Þ= Vn fð Þ
In fð Þ+D fð Þ.

3 The assumption that D(f ) is zero-mean is based on the fact that

we assume that the current-voltage relation of the battery is lin-

ear, which means that the DC-component of d(t) (not to be con-

fused with the DC-component of the stimulus for impedance

measurements), which corresponds to f = 0 of the Fourier trans-

form signal D(f ), will not influence the EIS measurement at the

typical frequencies under consideration. Since the current-voltage

relation is generally nonlinear, the DC-component of d(t) could

influence the EIS measurements. How to deal with this during EIS

measurements is still an open and important topic for further

research. However, in case of a large battery pack, for example, for

an electric vehicle, the DC-component of d(t) is relatively small

with respect to the battery capacity and in that case, as shown by

Raijmakers et al.,9 impedance-based temperature estimation can

still be applied. Therefore, we assume D(f ) to be zero-mean.
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