000872963 001__ 872963 000872963 005__ 20221109161717.0 000872963 0247_ $$2arXiv$$aarXiv:2001.04184 000872963 0247_ $$2doi$$a10.1137/20M1313933 000872963 0247_ $$2Handle$$a2128/28400 000872963 0247_ $$2altmetric$$aaltmetric:110670972 000872963 0247_ $$2WOS$$aWOS:000692204700003 000872963 037__ $$aFZJ-2020-00420 000872963 041__ $$aEnglish 000872963 082__ $$a510 000872963 1001_ $$0P:(DE-HGF)0$$aKollnig, Konrad$$b0 000872963 245__ $$aRational Spectral Filters with Optimal Convergence Rate 000872963 260__ $$aPhiladelphia, Pa.$$bSIAM$$c2021 000872963 3367_ $$2DRIVER$$aarticle 000872963 3367_ $$2DataCite$$aOutput Types/Journal article 000872963 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627993623_23740 000872963 3367_ $$2BibTeX$$aARTICLE 000872963 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000872963 3367_ $$00$$2EndNote$$aJournal Article 000872963 520__ $$aIn recent years, contour-based eigensolvers have emerged as a standard approach for the solution of large and sparse eigenvalue problems. Building upon recent performance improvements through nonlinear least-squares optimization of so-called rational filters, we introduce a systematic method to design these filters by minimizing the worst-case convergence rate and eliminate the parametric dependence on weight functions. Further, we provide an efficient way to deal with the box-constraints which play a central role for the use of iterative linear solvers in contour-based eigensolvers. Indeed, these parameter-free filters consistently minimize the number of iterations and the number of FLOPs to reach convergence in the eigensolver. As a byproduct, our rational filters allow for a simple solution to load balancing when the solution of an interior eigenproblem is approached by the slicing of the sought after spectral interval. 000872963 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000872963 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2 000872963 588__ $$aDataset connected to arXivarXiv 000872963 7001_ $$0P:(DE-HGF)0$$aBientinesi, Paolo$$b1 000872963 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b2$$eCorresponding author 000872963 773__ $$0PERI:(DE-600)1468391-x$$a10.1137/20M1313933$$gVol. 43, no. 4, p. A2660 - A2684$$n4$$pA2660–A2684$$tSIAM journal on scientific computing$$v43$$x0196-5204$$y2021 000872963 8564_ $$uhttps://juser.fz-juelich.de/record/872963/files/2001.04184.pdf$$yOpenAccess 000872963 909CO $$ooai:juser.fz-juelich.de:872963$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000872963 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich$$b2$$kFZJ 000872963 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000872963 9141_ $$y2021 000872963 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000872963 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000872963 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSIAM J SCI COMPUT : 2017 000872963 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000872963 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000872963 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000872963 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000872963 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000872963 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000872963 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000872963 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000872963 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000872963 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000872963 980__ $$ajournal 000872963 980__ $$aVDB 000872963 980__ $$aUNRESTRICTED 000872963 980__ $$aI:(DE-Juel1)JSC-20090406 000872963 9801_ $$aFullTexts