000872981 001__ 872981
000872981 005__ 20240610121008.0
000872981 0247_ $$2doi$$a10.1103/PhysRevB.100.075141
000872981 0247_ $$2ISSN$$a0163-1829
000872981 0247_ $$2ISSN$$a0556-2805
000872981 0247_ $$2ISSN$$a1050-2947
000872981 0247_ $$2ISSN$$a1094-1622
000872981 0247_ $$2ISSN$$a1095-3795
000872981 0247_ $$2ISSN$$a1098-0121
000872981 0247_ $$2ISSN$$a1538-4489
000872981 0247_ $$2ISSN$$a1550-235X
000872981 0247_ $$2ISSN$$a2469-9950
000872981 0247_ $$2ISSN$$a2469-9969
000872981 0247_ $$2Handle$$a2128/24177
000872981 0247_ $$2WOS$$aWOS:000482213800001
000872981 037__ $$aFZJ-2020-00438
000872981 082__ $$a530
000872981 1001_ $$0P:(DE-Juel1)171733$$aWynen, Jan-Lukas$$b0$$eCorresponding author
000872981 245__ $$aAvoiding ergodicity problems in lattice discretizations of the Hubbard model
000872981 260__ $$aWoodbury, NY$$bInst.$$c2019
000872981 3367_ $$2DRIVER$$aarticle
000872981 3367_ $$2DataCite$$aOutput Types/Journal article
000872981 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581690989_18304
000872981 3367_ $$2BibTeX$$aARTICLE
000872981 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000872981 3367_ $$00$$2EndNote$$aJournal Article
000872981 520__ $$aThe Hubbard model arises naturally when electron-electron interactions are added to the tight-binding descriptions of many condensed matter systems. For instance, the two-dimensional Hubbardmodel on the honeycomb lattice is central to the ab initio description of the electronic structure ofcarbon nanomaterials, such as graphene. Such low-dimensional Hubbard models are advantageouslystudied with Markov chain Monte Carlo methods, such as Hybrid Monte Carlo (HMC). HMC is thestandard algorithm of the lattice gauge theory community, as it is well suited to theories of dynamicalfermions. As HMC performs continuous, global updates of the lattice degrees of freedom, it providessuperior scaling with system size relative to local updating methods. A potential drawback of HMCis its susceptibility to ergodicity problems due to so-called exceptional configurations, for which thefermion operator cannot be inverted. Recently, ergodicity problems were found in some formulationsof HMC simulations of the Hubbard model. Here, we address this issue directly and clarify underwhat conditions ergodicity is maintained or violated in HMC simulations of the Hubbard model.We study different lattice formulations of the fermion operator and provide explicit, representativecalculations for small systems, often comparing to exact results. We show that a fermion operatorcan be found which is both computationally convenient and free of ergodicity problems.
000872981 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000872981 536__ $$0G:(DE-Juel1)jjsc37_20180501$$aCarbon Nano-Structures with High-Performance Computing (jjsc37_20180501)$$cjjsc37_20180501$$fCarbon Nano-Structures with High-Performance Computing$$x1
000872981 588__ $$aDataset connected to CrossRef
000872981 7001_ $$0P:(DE-Juel1)171536$$aBerkowitz, Evan$$b1$$ufzj
000872981 7001_ $$0P:(DE-HGF)0$$aKörber, Christopher$$b2
000872981 7001_ $$0P:(DE-Juel1)145995$$aLähde, Timo A.$$b3$$ufzj
000872981 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b4$$ufzj
000872981 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.075141$$gVol. 100, no. 7, p. 075141$$n7$$p075141$$tPhysical review / B$$v100$$x0163-1829$$y2019
000872981 8564_ $$uhttps://juser.fz-juelich.de/record/872981/files/PhysRevB.100.075141.pdf$$yOpenAccess
000872981 8564_ $$uhttps://juser.fz-juelich.de/record/872981/files/PhysRevB.100.075141.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872981 909CO $$ooai:juser.fz-juelich.de:872981$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872981 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000872981 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000872981 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000872981 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000872981 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000872981 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000872981 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000872981 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000872981 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872981 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000872981 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000872981 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000872981 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000872981 9141_ $$y2019
000872981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171733$$aForschungszentrum Jülich$$b0$$kFZJ
000872981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171536$$aForschungszentrum Jülich$$b1$$kFZJ
000872981 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000872981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000872981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145995$$aForschungszentrum Jülich$$b3$$kFZJ
000872981 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b4$$kFZJ
000872981 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000872981 920__ $$lyes
000872981 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000872981 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000872981 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000872981 9801_ $$aFullTexts
000872981 980__ $$ajournal
000872981 980__ $$aVDB
000872981 980__ $$aI:(DE-Juel1)IAS-4-20090406
000872981 980__ $$aI:(DE-Juel1)IKP-3-20111104
000872981 980__ $$aI:(DE-82)080012_20140620
000872981 980__ $$aUNRESTRICTED
000872981 981__ $$aI:(DE-Juel1)IAS-4-20090406