001     872981
005     20240610121008.0
024 7 _ |2 doi
|a 10.1103/PhysRevB.100.075141
024 7 _ |2 ISSN
|a 0163-1829
024 7 _ |2 ISSN
|a 0556-2805
024 7 _ |2 ISSN
|a 1050-2947
024 7 _ |2 ISSN
|a 1094-1622
024 7 _ |2 ISSN
|a 1095-3795
024 7 _ |2 ISSN
|a 1098-0121
024 7 _ |2 ISSN
|a 1538-4489
024 7 _ |2 ISSN
|a 1550-235X
024 7 _ |2 ISSN
|a 2469-9950
024 7 _ |2 ISSN
|a 2469-9969
024 7 _ |2 Handle
|a 2128/24177
024 7 _ |2 WOS
|a WOS:000482213800001
037 _ _ |a FZJ-2020-00438
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)171733
|a Wynen, Jan-Lukas
|b 0
|e Corresponding author
245 _ _ |a Avoiding ergodicity problems in lattice discretizations of the Hubbard model
260 _ _ |a Woodbury, NY
|b Inst.
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1581690989_18304
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The Hubbard model arises naturally when electron-electron interactions are added to the tight-binding descriptions of many condensed matter systems. For instance, the two-dimensional Hubbardmodel on the honeycomb lattice is central to the ab initio description of the electronic structure ofcarbon nanomaterials, such as graphene. Such low-dimensional Hubbard models are advantageouslystudied with Markov chain Monte Carlo methods, such as Hybrid Monte Carlo (HMC). HMC is thestandard algorithm of the lattice gauge theory community, as it is well suited to theories of dynamicalfermions. As HMC performs continuous, global updates of the lattice degrees of freedom, it providessuperior scaling with system size relative to local updating methods. A potential drawback of HMCis its susceptibility to ergodicity problems due to so-called exceptional configurations, for which thefermion operator cannot be inverted. Recently, ergodicity problems were found in some formulationsof HMC simulations of the Hubbard model. Here, we address this issue directly and clarify underwhat conditions ergodicity is maintained or violated in HMC simulations of the Hubbard model.We study different lattice formulations of the fermion operator and provide explicit, representativecalculations for small systems, often comparing to exact results. We show that a fermion operatorcan be found which is both computationally convenient and free of ergodicity problems.
536 _ _ |0 G:(DE-HGF)POF3-574
|a 574 - Theory, modelling and simulation (POF3-574)
|c POF3-574
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)jjsc37_20180501
|a Carbon Nano-Structures with High-Performance Computing (jjsc37_20180501)
|c jjsc37_20180501
|f Carbon Nano-Structures with High-Performance Computing
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)171536
|a Berkowitz, Evan
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Körber, Christopher
|b 2
700 1 _ |0 P:(DE-Juel1)145995
|a Lähde, Timo A.
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)159481
|a Luu, Tom
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)2844160-6
|a 10.1103/PhysRevB.100.075141
|g Vol. 100, no. 7, p. 075141
|n 7
|p 075141
|t Physical review / B
|v 100
|x 0163-1829
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/872981/files/PhysRevB.100.075141.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/872981/files/PhysRevB.100.075141.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:872981
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171733
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)171536
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a External Institute
|b 2
|k Extern
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145995
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159481
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS REV B : 2017
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21