000872984 001__ 872984
000872984 005__ 20210130004339.0
000872984 0247_ $$2arXiv$$aarXiv:1912.03278
000872984 0247_ $$2Handle$$a2128/24176
000872984 0247_ $$2altmetric$$aaltmetric:72431900
000872984 037__ $$aFZJ-2020-00441
000872984 1001_ $$0P:(DE-HGF)0$$aOstm, Johann$$b0$$eCorresponding author
000872984 245__ $$aThe Ising Model with Hybrid Monte Carlo
000872984 260__ $$c2019
000872984 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1580810498_4614
000872984 3367_ $$2ORCID$$aWORKING_PAPER
000872984 3367_ $$028$$2EndNote$$aElectronic Article
000872984 3367_ $$2DRIVER$$apreprint
000872984 3367_ $$2BibTeX$$aARTICLE
000872984 3367_ $$2DataCite$$aOutput Types/Working Paper
000872984 520__ $$aThe Ising model is a simple statistical model for ferromagnetism. There are analytic solutions for low dimensions and very efficient Monte Carlo methods, such as cluster algorithms, for simulating this model in special cases. However most approaches do not generalise to arbitrary lattices and couplings. We present a formalism that allows one to apply Hybrid Monte Carlo (HMC) simulations to the Ising model, demonstrating how a system with discrete degrees of freedom can be simulated with continuous variables. Because of the flexibility of HMC, our formalism is easily generalizable to arbitrary modifications of the model, creating a route to leverage advanced algorithms such as shift preconditioners and multi-level methods, developed in conjunction with HMC.
000872984 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000872984 588__ $$aDataset connected to arXivarXiv
000872984 7001_ $$0P:(DE-Juel1)179213$$aBerkowitz, Evan$$b1
000872984 7001_ $$0P:(DE-HGF)0$$aPetschlies, Marcus$$b2
000872984 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b3$$ufzj
000872984 7001_ $$0P:(DE-HGF)0$$aPittler, Ferenc$$b4
000872984 8564_ $$uhttps://juser.fz-juelich.de/record/872984/files/1912.03278.pdf$$yOpenAccess
000872984 8564_ $$uhttps://juser.fz-juelich.de/record/872984/files/1912.03278.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872984 909CO $$ooai:juser.fz-juelich.de:872984$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b3$$kFZJ
000872984 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000872984 9141_ $$y2019
000872984 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872984 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000872984 9801_ $$aFullTexts
000872984 980__ $$apreprint
000872984 980__ $$aVDB
000872984 980__ $$aUNRESTRICTED
000872984 980__ $$aI:(DE-Juel1)IAS-4-20090406