000872984 001__ 872984 000872984 005__ 20210130004339.0 000872984 0247_ $$2arXiv$$aarXiv:1912.03278 000872984 0247_ $$2Handle$$a2128/24176 000872984 0247_ $$2altmetric$$aaltmetric:72431900 000872984 037__ $$aFZJ-2020-00441 000872984 1001_ $$0P:(DE-HGF)0$$aOstm, Johann$$b0$$eCorresponding author 000872984 245__ $$aThe Ising Model with Hybrid Monte Carlo 000872984 260__ $$c2019 000872984 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1580810498_4614 000872984 3367_ $$2ORCID$$aWORKING_PAPER 000872984 3367_ $$028$$2EndNote$$aElectronic Article 000872984 3367_ $$2DRIVER$$apreprint 000872984 3367_ $$2BibTeX$$aARTICLE 000872984 3367_ $$2DataCite$$aOutput Types/Working Paper 000872984 520__ $$aThe Ising model is a simple statistical model for ferromagnetism. There are analytic solutions for low dimensions and very efficient Monte Carlo methods, such as cluster algorithms, for simulating this model in special cases. However most approaches do not generalise to arbitrary lattices and couplings. We present a formalism that allows one to apply Hybrid Monte Carlo (HMC) simulations to the Ising model, demonstrating how a system with discrete degrees of freedom can be simulated with continuous variables. Because of the flexibility of HMC, our formalism is easily generalizable to arbitrary modifications of the model, creating a route to leverage advanced algorithms such as shift preconditioners and multi-level methods, developed in conjunction with HMC. 000872984 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0 000872984 588__ $$aDataset connected to arXivarXiv 000872984 7001_ $$0P:(DE-Juel1)179213$$aBerkowitz, Evan$$b1 000872984 7001_ $$0P:(DE-HGF)0$$aPetschlies, Marcus$$b2 000872984 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b3$$ufzj 000872984 7001_ $$0P:(DE-HGF)0$$aPittler, Ferenc$$b4 000872984 8564_ $$uhttps://juser.fz-juelich.de/record/872984/files/1912.03278.pdf$$yOpenAccess 000872984 8564_ $$uhttps://juser.fz-juelich.de/record/872984/files/1912.03278.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000872984 909CO $$ooai:juser.fz-juelich.de:872984$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000872984 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b3$$kFZJ 000872984 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0 000872984 9141_ $$y2019 000872984 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000872984 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000872984 9801_ $$aFullTexts 000872984 980__ $$apreprint 000872984 980__ $$aVDB 000872984 980__ $$aUNRESTRICTED 000872984 980__ $$aI:(DE-Juel1)IAS-4-20090406