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The Ising model is a simple statistical model for ferromagnetism. There are analytic solutions for
low dimensions and very efficient Monte Carlo methods, such as cluster algorithms, for simulating
this model in special cases. However most approaches do not generalise to arbitrary lattices and
couplings. We present a formalism that allows one to apply Hybrid Monte Carlo (HMC) simulations
to the Ising model, demonstrating how a system with discrete degrees of freedom can be simulated
with continuous variables. Because of the flexibility of HMC, our formalism is easily generalizable
to arbitrary modifications of the model, creating a route to leverage advanced algorithms such as
shift preconditioners and multi-level methods, developed in conjunction with HMC.

I. INTRODUCTION

The Ising model is a simple model of ferromagnetism and exhibits a phase transition in dimensions d > 2. Analytic
solutions determining the critical temperature and magnetization are known for d = 1 and 2 [1], and in large
dimensions the model serves as an exemplary test bed for application of mean-field techniques. It is also a popular
starting point for the discussion of the renormalization group and calculation of critical exponents.

In many cases systems that are seemingly disparate can be mapped into the Ising model with slight modification.
Examples include certain neural networks [2, 3], percolation [4-6], ice melt ponds in the arctic [7], financial markets [8—
10], and population segregation in urban areas[11, 12], to name a few. In short, the applicability of the Ising model
goes well beyond its intended goal of describing ferromagnetic behavior. Furthermore, it serves as an important
pedagogical tool—any serious student of statistical/condensed matter physics as well as field theory should be well
versed in the Ising model.

The pedagogical utility of the Ising model extends into numerics as well. Stochastic lattice methods and the
Markov-chain Monte-Carlo (MCMC) concept are routinely introduced via application to the Ising model. Examples
range from the simple Metropolis-Hastings algorithm to more advanced cluster routines, such as Swendsen-Wang [13]
and Wolff [14] and the worm algorithm of Prokof’ev and Svistunov [15]. Because so much is known of the Ising model,
it also serves as a standard test bed for novel algorithms. Machine learning (ML) techniques were recently applied to
the Ising model to aid in identification of phase transitions and order parameters [16-20].

A common feature of the algorithms mentioned above is that they are well suited for systems with discrete internal
spaces, which of course includes the Ising model. For continuous degrees of freedom the hybrid Monte Carlo (HMC)
algorithm|21] is instead the standard workhorse. Lattice quantum chromodynamics (LQCD) calculations, for ex-
ample, rely strongly on HMC. Certain applications in condensed matter physics now also routinely use HMC[22-24].
Furthermore, algorithms related to preconditioning and multi-level integration have greatly extended the efficacy and
utility of HMC. With the need to sample posterior distributions in so-called big data applications, HMC has become
widespread even beyond scientific applications.

It is natural to ask, then, how to apply the numerically-efficient HMC to the broadly-applicable Ising model. At
first glance, the Ising model’s discrete variables pose an obstacle for smoothly integrating the Hamiltonian equations
of motion to arrive at a new proposal. We hope this paper serves a pedagogical function, as a nice platform for
introducing both HMC and the Ising model, and a clarifying function, demonstrating how HMC can be leveraged for
models with discrete internal spaces.

So, for pedagogical reasons, our implementation of HMC is the simplest ‘vanilla’ version. As such, it does not
compete well, in the numerical sense, with the more advanced cluster algorithms mentioned above. However, it seems
likely that by leveraging the structure of the Ising model one could find a competitive HMC-based algorithm, but we
leave such investigations for the future.

This paper is organized as follows. In Section II we review the Ising model. We describe how one can transform
the Ising model, which resides in a discrete spin space, into a model residing in a continuous space by introducing an
auxiliary field and integrating out the spin degrees of freedom. The numerical stability of such a transformation is
not trivial', and we describe the conditions for maintaining stability. With our continuous space defined, we show in

1 Such stability considerations have been egregiously ignored in the past.



Section IIT how to simulate the system with HMC. Such a discussion of course includes a cursory description of the
HMC algorithm. In Section IV we show how to calculate observables within this continuous space, since quantities
such as magnetization or average energy are originally defined in terms of spin degrees of freedom which are no longer
present. We also provide numerical results of key observables, demonstrating proof-of-principle. We conclude in
Section V.

II. FORMALISM

The Ising model on a lattice with N sites is described by the Hamiltonian
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where s; = +1 are the spins on sites ¢ = 1,..., N, J the coupling between neighbouring spins (denoted by (i, j}),
h; is the local external magnetic field, and the T superscript denotes the transpose. We also define the symmetric
connectivity matrix K containing the information about the nearest neighbour couplings. The factor % on the nearest-
neighbor term (2) accounts for the double counting of neighbour pairs that arises from making K symmetric. If h is

constant we write

h=ho| . |- (3)
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We assume a constant coupling for simplicity in this work. The same formalism developed here can however be applied
for site-dependent couplings as well. In this case we simply have to replace the matrix JK by the full coupling matrix.

The partition sum over all spin configurations {s;} = {s;|:=1,...,N}
Z= > e (4)
{Sl}:il

with the inverse temperature § is impractical to compute directly for large lattices because the number of terms
increases exponentially, providing the motivation for Monte Carlo methods. Our goal is to rewrite Z in terms of a
continuous variable so that molecular dynamics (MD) becomes applicable. The usual way to eliminate the discrete
degrees of freedom and replace them by continuous ones is via the Hubbard-Stratonovich (HS) transformation. For
a positive definite matrix A € RV>*Y and some vector v € RV, the HS relation reads

m/[n‘”’

where we integrate over an auziliary field ¢. The argument of the exponent has been linearized in v. In our case the
matrix J'K with

T Av o= 30 AT ptud (5)
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takes the place of A in the expression above. However, J'K is not positive definite in general, nor is —.J'K. The
eigenvalues A of K are distributed in the interval

A € [-n, n] (7)

where n is the maximal number of nearest neighbours a site can have. In the thermodynamic limit N — oo the
spectrum becomes continuous and all values in the interval are reached. Thus the HS transformation is not stable:
the Gaussian integral with negative eigenvalues does not converge.

We have to modify the connectivity matrix in such a way that we can apply the HS transformation. Therefore we
introduce a constant shift C' to the K matrix,

K::K—i—C]l, (8)



where C' has to have the same sign as J', by adding and subtracting the corresponding term in the Hamiltonian. Now
K has the same eigenspectrum as K, but shifted by C'. Thus if we choose |C| > n, J'K is positive definite. We will
take such a choice for granted from now on. For variable coupling the interval (7) might have to be adjusted, but the
eigenspectrum remains bounded from below, so C' can be chosen large enough to make .J’ K positive definite.

Now we can apply the HS transformation to the partition sum
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where we used in (10) that s? = 1 for all i and defined k' := Sh analogously to (6). In (11) we performed the HS
transformation and in (12) we explicitly evaluated the sum over all the now-independent s;, thereby integrating out
the spins. After rewriting the cosh term in (13) we are left with an effective action that can be used to perform HMC
calculations. However, we do not recommend using this form directly, as it needs a matrix inversion.

Instead, let us perform the substitution

¢=VIKy—h (14)
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with the functional determinant v/J' det K. This allows us to get rid of the inverse of K in the variable part of the
partition sum
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The only left over term involving an inversion remains in the constant h’ TK-n. Fortunately this does not need to
be calculated during HMC simulations. We do need it, however, for the calculation of some observables, such as the
magnetisation (27), and for this purpose it can be calculated once without any need for updates.

A further simplification can be achieved when the magnetic field is constant (3) and every lattice site has the same
number of nearest neighbours ng. Then we find that

Kh' = (ng+ C) I (16)
and thus
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III. HMC

Hybrid Monte Carlo requires introducing a fictitious time and conjugate momenta, integrating current field config-
urations according to Hamiltonian equations of motion to make a Metropolis proposal. The effective action for the
auxiliary field ¢ (15) can be used to derive a Hamiltonian by adding conjugate momenta p,
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with the equations of motion (EOM)

b= =y (19)
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where the tanh is understood element-wise.
Thus one can employ the hybrid Monte Carlo (HMC) algorithm. Starting with some initial ¢ configuration, p is

p:

sampled according to a Gaussian distribution e~2P". The EOM are integrated to derive a new configuration. The
integration of the differential equations is performed by a symmetric symplectic integrator (we use leap-frog here, but
more efficient schemes can be applied). The new configuration is accepted with the Metropolis-Hastings probability
min (1, e‘AH) in order to maintain detailed balance despite inexact numerical integration; AH = Hpew — Holq is the
corresponding energy difference.

After some thermalization a number N¢¢ of configurations {¢)"} is created and the estimator of an observable O(%))
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converges to the expectation value
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as the ensemble size Ny — oo.

Not much time has been spent on the tuning of C' during this work. We expect that the choice of C' can influence
the speed of the simulations. Clear is that |C| must not be chosen too large because in the limit |C| — oo the
Hamiltonian can be approximated by

1 1
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with the minima
Vi = V. (24)

Any deviation from a minimum is enhanced by the factor of C' and is thus frozen out for large |C|. This reproduces
the original discrete Ising model up to normalisation factors. Plainly the HMC breaks down in this case. As the
limit is approached, the values for the 1; become confined to smaller and smaller regions. The result is that HMC
simulations can get stuck in local minima and the time series is no longer ergodic. From now on we use |C| = n+107°.

A large coupling (at low temperature) J’' introduces an ergodicity problem as well. This case however is less
problematic because there are only two regions with a domain wall between them; the region with all ¥; > 0 and the
region with all ¢; < 0. The ergodicity issue is alleviated by proposing a global sign flip and performing a Metropolis
accept/reject step every couple of trajectories, similar to that proposed in [24].

IV. RESULTS

Let us again assume constant external field with strength hy (3). Then the expectation value of the average
magnetisation and energy per site read
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where (1)) = (1;) for any site ¢ due to translation invariance. Any other physical observables can be derived in the
same way. For example, higher-point correlation functions like spin-spin correlators may be derived by functionally
differentiating with respect to a site-dependent h; (without the simplification of constant external field (17)). We
stress here that, although C' appears in observables (as in the magnetization (27) and energy density (29)), the results
are independent of C—its value only influences the convergence rate.
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Figure 1. Expectation value of the energy per site for the two dimensional periodic square lattice (left) and the lattice with
all-to-all coupling (right) for the HMC and the Metropolis-Hastings algorithms at critical coupling and h = 0 with lattice sizes
N.

In Figure 1 we demonstrate that the HMC algorithm indeed produces correct results. The left panel shows the
average energy per site at the critical point [1] of the two-dimensional square lattice with periodic boundary conditions.
The results from the HMC simulations? are compared to the results obtained via the local Metropolis-Hastings
algorithm with the same number N¢f of sweeps (a sweep consists of N spin flip proposals). We not only find that the
results are compatible, but also that the errors are comparable. The right panel shows the average energy per site in
the case where the coupling is no longer nearest neighbor, but the extreme opposite with all-to-all couplings. This
“infinite-range" Ising model [25] has analytic solutions for physical observables as a function of the number of lattice
sites N which we show for the case of the average energy (black line). Our numerical results agree very well with the
exact result.
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Figure 2. Integrated autocorrelation time of |m| for the HMC and the Metropolis-Hastings algorithms at critical coupling and
h = 0 for the d = 2 (left) and d = 3 (right) dimensional periodic square lattice with size N. The lines are fits of the form

Tint = aN 7 for N > 10.

Since it is not the aim of this work to present physical results, but rather to introduce an alternative formulation
for simulating the Ising model and generalizations thereof, we do not compute other observables explicitly, nor do

2 The number of integration steps per trajectory has been set to log N. It turns out that this yields acceptance rates between 70% and
80% for a broad range of lattice sizes and dimensions.



we investigate their dependence on other parameters. On the other hand it is not sufficient that the algorithm in
principle produces correct results—we must also investigate its efficiency. A good measure for the efficiency is the
severity of critical slowing down—that the integrated autocorrelation time?® 7, diverges at the critical point as some
power « of the system size 7,y o< N7. One could expect that, being a global update algorithm, the HMC does not
suffer as much from critical slowing down as Metropolis-Hastings. Figure 2 however shows that both algorithms have
dynamic exponent z = dy ~ 2 in d = 2 and d = 3 dimensions (see Ref. [27] and references within for a discussion of
the critical coupling and exponents in d = 3). Still one has to keep in mind that a Metropolis-Hastings sweep takes
less time than an HMC trajectory and the HMC trajectories become logarithmically longer as N grows.

V. CONCLUSION

In this paper we showed how to apply the HMC algorithm to the Ising model, thereby successfully applying an
algorithm that uses continuous state variables to a system with discrete degrees of freedom. We find that the HMC
algorithm generalises the Ising model very well to arbitrary geometries without much effort. It has been presented
here in the most simple form. In this simple form the HMC is an extremely inefficient algorithm if applied to the
Ising model. Although more flexible than the most efficient methods, such as cluster algorithms, it loses as compared
even to the Metropolis-Hastings algorithm. The coefficient by which the Metropolis-Hastings algorithm surpasses the
HMC decreases with dimension, so that HMC might be preferable in case of an extremely high number of nearest
neighbours—in the case of less local coupling, for example.

Moreover, for physical systems that suffer from sign problems, one may hope to leverage complex Langevin, Lefschetz
thimble, or other contour-optimizing methods (for a dramatically incomplete set of examples, consider, respectively,
Ref. [28, 29], Refs. [30-32], and Refs. [33-35] and references therein). The formulation in terms of continuous variables
presented here is well-suited for these methods, while the methods that deal directly with the original discrete variables
such as the Metropolis-Hastings, cluster, and worm algorithms, for example, are non-starters. In that sense, our exact
reformulation and HMC method can be seen as the first step towards solving otherwise-intractable problems.

The HMC algorithm could be optimised by more efficient integrators and different choices of C, just to name the
most obvious possibilities. Many more methods have been developed to improve HMC performance and it is expected
that some of them could also speed up the Ising model.
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