000872990 001__ 872990
000872990 005__ 20210130004339.0
000872990 0247_ $$2Handle$$a2128/24114
000872990 037__ $$aFZJ-2020-00446
000872990 041__ $$aEnglish
000872990 1001_ $$0P:(DE-Juel1)176475$$aMau, Lisa$$b0$$eFirst author
000872990 1112_ $$aRhizosphere 5$$cSaskatoon$$d2019-07-07 - 2019-07-11$$wKanada
000872990 245__ $$aThe effects of algae fertilizer on wheat root morphology elucidated using modeling, phenotyping and metabolomics
000872990 260__ $$c2019
000872990 3367_ $$033$$2EndNote$$aConference Paper
000872990 3367_ $$2BibTeX$$aINPROCEEDINGS
000872990 3367_ $$2DRIVER$$aconferenceObject
000872990 3367_ $$2ORCID$$aCONFERENCE_POSTER
000872990 3367_ $$2DataCite$$aOutput Types/Conference Poster
000872990 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1580400267_18264$$xOther
000872990 520__ $$aOne of the big challenges facing humanity is securing food and feed for future generations in a sustainable bioeconomy. The way fertilizer is used today aims at high yields without adequately considering the needs of plants and the preservation of our environment. The microalgae Chlorella vulgaris has been successfully used as a vector system to recycle phosphorus. Our group found additionally that C. vulgaris can fertilize wheat and modify the root architecture. The underlying mechanisms have not yet been investigated, and as a consequence, we hypothesize that: (1) nutrients from algae are available to wheat (Triticum aestivum L.) root uptake; (2) roots respond to algae fertilizer with changes in root architecture and morphology that are different to conventional fertilizer; and (3) active response of roots to algal nutrients is reflected in an alternate mode of nutrient uptake. We are analyzing single plants in highly controlled microenvironments that allow the direct observation of morphological changes at the root micro- and macroscales. Simultaneously, we quantify changes in the phosphate pools released and transformed from algal components into the medium, their uptake from the medium, and their incorporation into the plant. These dynamics will allow the identification of the fertilizing phosphate components of the algal biomass. Their separation into different organic and inorganic fractions will allow the identification of the specific components available to root uptake. Effects of components on roots and the plant’s nutrition will be assessed by metabolomics. We are using the genetic model for wheat, Brachypodium distachyon, because it is suited to phenotyping, genotyping and interpretation of metabolomics. A better understanding of the interface between algal nutrients and the root may enable future agricultural applications with sustainable use of algal biomass after it has been mined for other valuable compounds.
000872990 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000872990 7001_ $$0P:(DE-Juel1)169451$$aKant, Josefine$$b1
000872990 7001_ $$0P:(DE-Juel1)173960$$aKlose, Holger$$b2
000872990 7001_ $$0P:(DE-Juel1)159104$$aKuchendorf, Christina$$b3
000872990 7001_ $$0P:(DE-Juel1)159592$$aNedbal, Ladislav$$b4
000872990 7001_ $$0P:(DE-HGF)0$$aRoessner, Ute$$b5$$eCorresponding author
000872990 7001_ $$0P:(DE-Juel1)166460$$aWatt, Michelle$$b6$$eCorresponding author
000872990 8564_ $$uhttps://juser.fz-juelich.de/record/872990/files/Rhizo5VersionPrint_LisaMau.pdf$$yOpenAccess
000872990 8564_ $$uhttps://juser.fz-juelich.de/record/872990/files/Rhizo5VersionPrint_LisaMau.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872990 909CO $$ooai:juser.fz-juelich.de:872990$$pdriver$$pVDB$$popen_access$$popenaire
000872990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176475$$aForschungszentrum Jülich$$b0$$kFZJ
000872990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169451$$aForschungszentrum Jülich$$b1$$kFZJ
000872990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173960$$aForschungszentrum Jülich$$b2$$kFZJ
000872990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159104$$aForschungszentrum Jülich$$b3$$kFZJ
000872990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159592$$aForschungszentrum Jülich$$b4$$kFZJ
000872990 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of BioSciences, University of Melbourne $$b5
000872990 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166460$$aForschungszentrum Jülich$$b6$$kFZJ
000872990 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000872990 9141_ $$y2019
000872990 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872990 920__ $$lyes
000872990 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000872990 980__ $$aposter
000872990 980__ $$aVDB
000872990 980__ $$aUNRESTRICTED
000872990 980__ $$aI:(DE-Juel1)IBG-2-20101118
000872990 9801_ $$aFullTexts