000872998 001__ 872998
000872998 005__ 20210130004340.0
000872998 0247_ $$2Handle$$a2128/24005
000872998 037__ $$aFZJ-2020-00449
000872998 041__ $$aEnglish
000872998 1001_ $$0P:(DE-Juel1)164507$$aSontheimer, Kim$$b0$$eCorresponding author$$ufzj
000872998 245__ $$aIn Transit Coupling of Neuroscientific Simulation and Analysis on High Performance Computing Systems$$f- 2019-08-29
000872998 260__ $$c2019
000872998 300__ $$a61 p.
000872998 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000872998 3367_ $$02$$2EndNote$$aThesis
000872998 3367_ $$2BibTeX$$aMASTERSTHESIS
000872998 3367_ $$2DRIVER$$amasterThesis
000872998 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1579773221_23329
000872998 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000872998 502__ $$aMasterarbeit, FH Aachen, 2019$$bMasterarbeit$$cFH Aachen$$d2019$$o2019-08-29
000872998 520__ $$aHigh performance computing (HPC) is experiencing an increasing imbalance be-tween processing power and I/O capabilities. This imbalance has led to the challengeof managing the large amounts of data produced by extreme-scale simulations. Ithas become prohibitive expensive to store this data on disk for subsequent offlineanalysis. In transit processing could perform this analysis on memory-resident data.In this thesis, based on requirements of neuroscientific use cases, a frameworkhas been designed, implemented and tested on the JURECA supercomputer locatedat the Forschungszentrum Jülich. In the framework, simulation and analysis areconnected in transit across compute nodes using a client-server model. Data istransferred in a streaming manner, without disk I/O in between. The frameworkfulfills the presented use case requirements. Dedicated experiments on algorithmicsolutions of the data transfer show, that no data is lost during transfer.The design of the framework enables future integration of other software and thuscould serve as a basis for in transit coupling in neuroscientific workflows on HPCsystems.
000872998 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000872998 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x1
000872998 8564_ $$uhttps://juser.fz-juelich.de/record/872998/files/Masterthesis_Kim_Sontheimer.pdf$$yOpenAccess
000872998 8564_ $$uhttps://juser.fz-juelich.de/record/872998/files/Masterthesis_Kim_Sontheimer.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000872998 909CO $$ooai:juser.fz-juelich.de:872998$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000872998 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000872998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164507$$aForschungszentrum Jülich$$b0$$kFZJ
000872998 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000872998 9141_ $$y2019
000872998 920__ $$lyes
000872998 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000872998 980__ $$amaster
000872998 980__ $$aVDB
000872998 980__ $$aUNRESTRICTED
000872998 980__ $$aI:(DE-Juel1)JSC-20090406
000872998 9801_ $$aFullTexts