000873030 001__ 873030
000873030 005__ 20210131031106.0
000873030 0247_ $$2arXiv$$aarXiv:1911.12762
000873030 0247_ $$2altmetric$$aaltmetric:75084226
000873030 037__ $$aFZJ-2020-00481
000873030 1001_ $$0P:(DE-Juel1)171323$$aChitgar, Zahra M.$$b0$$eCorresponding author$$ufzj
000873030 245__ $$aElectron self-injection threshold for the tandem-pulse laser wakefield accelerator
000873030 260__ $$c2019
000873030 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1595508119_5120
000873030 3367_ $$2ORCID$$aWORKING_PAPER
000873030 3367_ $$028$$2EndNote$$aElectronic Article
000873030 3367_ $$2DRIVER$$apreprint
000873030 3367_ $$2BibTeX$$aARTICLE
000873030 3367_ $$2DataCite$$aOutput Types/Working Paper
000873030 500__ $$a11 pages, 9 figures, submitted for publication (2019)
000873030 520__ $$aA controllable injection scheme is key to producing high quality laser-driven electron beams and X-rays. Self-injection is the most straightforward scheme leading to high current and peak energies, but is susceptible to variations in laser parameters and target characteristics. In this work improved control of electron self-injection in the nonlinear cavity regime using two laser-pulses propagating in tandem is investigated. In particular the advantages of the tandem-pulse scheme in terms of injection threshold, electron energy and beam properties in a regime relevant to betatron radiation are demonstrated. Moreover it is shown that the laser power threshold for electron self-injection can be reduced by up to a factor of two compared to the standard, single-pulse wakefield scheme.
000873030 536__ $$0G:(DE-HGF)POF3-631$$a631 - Accelerator R & D (POF3-631)$$cPOF3-631$$fPOF III$$x0
000873030 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000873030 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000873030 588__ $$aDataset connected to arXivarXiv
000873030 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b1$$ufzj
000873030 7001_ $$0P:(DE-Juel1)166199$$aBöker, Jürgen$$b2$$ufzj
000873030 7001_ $$0P:(DE-Juel1)131234$$aLehrach, Andreas$$b3$$ufzj
000873030 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b4$$ufzj
000873030 8564_ $$uhttps://arxiv.org/abs/1911.12762
000873030 909CO $$ooai:juser.fz-juelich.de:873030$$pVDB
000873030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171323$$aForschungszentrum Jülich$$b0$$kFZJ
000873030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich$$b1$$kFZJ
000873030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166199$$aForschungszentrum Jülich$$b2$$kFZJ
000873030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131234$$aForschungszentrum Jülich$$b3$$kFZJ
000873030 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)131234$$aRWTH Aachen$$b3$$kRWTH
000873030 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b4$$kFZJ
000873030 9131_ $$0G:(DE-HGF)POF3-631$$1G:(DE-HGF)POF3-630$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator R & D$$x0
000873030 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000873030 9141_ $$y2019
000873030 920__ $$lyes
000873030 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x0
000873030 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000873030 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000873030 980__ $$apreprint
000873030 980__ $$aVDB
000873030 980__ $$aI:(DE-Juel1)IKP-4-20111104
000873030 980__ $$aI:(DE-Juel1)PGI-6-20110106
000873030 980__ $$aI:(DE-Juel1)JSC-20090406
000873030 980__ $$aUNRESTRICTED