001     873030
005     20210131031106.0
024 7 _ |a arXiv:1911.12762
|2 arXiv
024 7 _ |a altmetric:75084226
|2 altmetric
037 _ _ |a FZJ-2020-00481
100 1 _ |a Chitgar, Zahra M.
|0 P:(DE-Juel1)171323
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Electron self-injection threshold for the tandem-pulse laser wakefield accelerator
260 _ _ |c 2019
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1595508119_5120
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a 11 pages, 9 figures, submitted for publication (2019)
520 _ _ |a A controllable injection scheme is key to producing high quality laser-driven electron beams and X-rays. Self-injection is the most straightforward scheme leading to high current and peak energies, but is susceptible to variations in laser parameters and target characteristics. In this work improved control of electron self-injection in the nonlinear cavity regime using two laser-pulses propagating in tandem is investigated. In particular the advantages of the tandem-pulse scheme in terms of injection threshold, electron energy and beam properties in a regime relevant to betatron radiation are demonstrated. Moreover it is shown that the laser power threshold for electron self-injection can be reduced by up to a factor of two compared to the standard, single-pulse wakefield scheme.
536 _ _ |a 631 - Accelerator R & D (POF3-631)
|0 G:(DE-HGF)POF3-631
|c POF3-631
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 2
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Gibbon, Paul
|0 P:(DE-Juel1)132115
|b 1
|u fzj
700 1 _ |a Böker, Jürgen
|0 P:(DE-Juel1)166199
|b 2
|u fzj
700 1 _ |a Lehrach, Andreas
|0 P:(DE-Juel1)131234
|b 3
|u fzj
700 1 _ |a Büscher, Markus
|0 P:(DE-Juel1)131108
|b 4
|u fzj
856 4 _ |u https://arxiv.org/abs/1911.12762
909 C O |p VDB
|o oai:juser.fz-juelich.de:873030
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171323
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132115
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131234
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)131234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131108
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF3-630
|0 G:(DE-HGF)POF3-631
|2 G:(DE-HGF)POF3-600
|v Accelerator R & D
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IKP-4-20111104
|k IKP-4
|l Kernphysikalische Großgeräte
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IKP-4-20111104
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21