001     873038
005     20210130004350.0
024 7 _ |a 2128/24129
|2 Handle
037 _ _ |a FZJ-2020-00489
041 _ _ |a English
100 1 _ |a Schrader, Tobias Erich
|0 P:(DE-Juel1)138266
|b 0
|e Corresponding author
|u fzj
111 2 _ |a FEBS Practical Course, Biomolecules in Action II ,DESY
|c Hamburg
|d 2019-06-25 - 2019-06-25
|w Germany
245 _ _ |a Neutron Protein Crystallography and equilibrium dynamics
260 _ _ |c 2019
336 7 _ |a lecture
|2 DRIVER
336 7 _ |a Generic
|0 31
|2 EndNote
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Lecture
|b lecture
|m lecture
|0 PUB:(DE-HGF)17
|s 1580473317_16722
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Text
|2 DataCite
520 _ _ |a In this lecture, an introduction into the method of neutron protein crystallography will be given and the differences to x-ray crystallography will be highlighted: As opposed to x-rays, neutrons are scattered from the nuclei and can therefore locate hydrogen atoms. Therefore, typical scientific questions addressed are the determination of protonation states of amino acid side chains in proteins and the characterization of the hydrogen bonding networks between the protein active centre and an inhibitor or substrate. The neutron single crystal diffractometer BIODIFF will serve as an example of a neutron protein crystallography beam line. It is located at the Heinz Maier-Leibnitz Zentrum, MLZ, at the research reactor (FRM II) in Garching, Germany. BIODIFF is a joint project of the Jülich Centre for Neutron Science (JCNS) and the Technical University of Munich (TUM). BIODFF is equipped with a standard Oxford Cryosystem “Cryostream 700+” which allows measurements in the temperature range from 90 K up to 500 K. A new kappa goniometer head was added recently. This allows an automated tilting of the crystal in order to increase the completeness of the data set when recording another set of frames in the tilted geometry. Efforts to increase the flux at the sample position and to reduce the background at the detector have led to the ability to measure smaller and smaller protein crystals down to 0.1 mm3 in volume. One application example is the improvement of antibiotic drugs. Many bacteria secret a protein called -lactamase into their environment. This protein is able to hydrolyse the four membered carbon atom ring in -lactam antibiotics. These antibiotics are thereby destroyed and are not harmful to the bacteria any more. This mechanism causes great problems in hospitals. With neutron protein crystallography we were able to find a deuterium atom at the amino acid side chain glutamate 166 in the -lactamase protein carrying a transition state analogue. This transition state analogue stops the enzymatic reaction in its first acylation step. Thereby one could identify glutamate 166 as the important base taking over the hydrogen atom in the acylation step. Improved antibiotics should find ways to bind to this side chain in order to prevent its action as a base. Or, an additional drug has to be given to the patients which blocks the -lactamase protein efficiently such that the antibiotics can work effectively agian. The technique of neutron protein crystallography uses elastic neutron scattering and gives information on the structure of the protein. Inelastic neutron scattering reports on the equilibrium dynamics of proteins in solution. In a short excursion, neutron spin echo spectroscopy, an example of an inelastic, i. e. spectroscopic neutron scattering technique will be introduced which allows to monitor large scale protein motions on a nanosecond timescale. In case of the protein Phosphoglyceratkinase, it will be shown that those motions are necessary for the protein to fulfill its enzymatic function.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 1
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 2
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e BIODIFF: Diffractometer for large unit cells
|f NL1
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)BIODIFF-20140101
|5 EXP:(DE-MLZ)BIODIFF-20140101
|6 EXP:(DE-MLZ)NL1-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e J-NSE: Neutron spin-echo spectrometer
|f NL2ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)J-NSE-20140101
|5 EXP:(DE-MLZ)J-NSE-20140101
|6 EXP:(DE-MLZ)NL2ao-20140101
|x 1
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/873038/files/FEBSschoolNeutronProteinCrystallographyLecture_cut.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/873038/files/FEBSschoolNeutronProteinCrystallographyLecture_cut.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:873038
|p openaire
|p open_access
|p VDB
|p driver
|p VDB:MLZ
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)138266
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 1
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a lecture
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21