000873040 001__ 873040
000873040 005__ 20210130004350.0
000873040 0247_ $$2doi$$a10.1021/acs.jctc.9b00825
000873040 0247_ $$2ISSN$$a1549-9618
000873040 0247_ $$2ISSN$$a1549-9626
000873040 0247_ $$2Handle$$a2128/24531
000873040 0247_ $$2altmetric$$aaltmetric:75163703
000873040 0247_ $$2pmid$$apmid:31967823
000873040 0247_ $$2WOS$$aWOS:000519337700048
000873040 037__ $$aFZJ-2020-00491
000873040 082__ $$a610
000873040 1001_ $$0P:(DE-HGF)0$$aMulnaes, Daniel$$b0
000873040 245__ $$aTopModel: Template-based protein structure prediction at low sequence identity using top-down consensus and deep neural networks
000873040 260__ $$aWashington, DC$$c2020
000873040 3367_ $$2DRIVER$$aarticle
000873040 3367_ $$2DataCite$$aOutput Types/Journal article
000873040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583850694_498
000873040 3367_ $$2BibTeX$$aARTICLE
000873040 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873040 3367_ $$00$$2EndNote$$aJournal Article
000873040 520__ $$aKnowledge of protein structures is essential to understand the proteins’ functions, evolution, dynamics, stabilities, interactions, and for data-driven protein- or drug-design. Yet, experimental structure determination rates are far exceeded by that of next-generation sequencing. Computational structure prediction seeks to alleviate this problem, and the Critical Assessment of protein Structure Prediction (CASP) has shown the value of consensus- and meta-methods that utilize complementary algorithms. However, traditionally, such methods employ majority voting during template selection and model averaging during refinement, which can drive the model away from the native fold if it is underrepresented in the ensemble. Here, we present TopModel, a fully automated meta-method for protein structure prediction. In contrast to traditional consensus- and meta-methods, TopModel uses top-down consensus and deep neural networks to select templates and identify and correct wrongly modeled regions. TopModel combines a broad range of state-of-the-art methods for threading, alignment and model quality estimation and provides a versatile work-flow and toolbox for template-based structure prediction. TopModel shows a superior template selection, alignment accuracy, and model quality for template-based structure prediction on the CASP10-12 datasets. TopModel was validated by prospective predictions of the nisin resistance protein NSR protein from S. agalactiae and LipoP from C. difficile, showing far better agreement with experimental data than any of its constituent primary predictors. These results, in general, demonstrate the utility of TopModel for protein structure prediction and, in particular, show how combining computational structure prediction with sparse or low-resolution experimental data can improve the final model.
000873040 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000873040 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x1
000873040 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x2
000873040 588__ $$aDataset connected to CrossRef
000873040 7001_ $$0P:(DE-HGF)0$$aPorta, Nicola$$b1
000873040 7001_ $$0P:(DE-HGF)0$$aClemens, Rebecca$$b2
000873040 7001_ $$0P:(DE-Juel1)172053$$aApanasenko, Irina$$b3$$ufzj
000873040 7001_ $$0P:(DE-HGF)0$$aReiners, Jens$$b4
000873040 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b5$$ufzj
000873040 7001_ $$0P:(DE-Juel1)144510$$aNeudecker, Philipp$$b6$$ufzj
000873040 7001_ $$0P:(DE-HGF)0$$aSmits, Sander H. J.$$b7
000873040 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b8$$eCorresponding author$$ufzj
000873040 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.9b00825$$gp. acs.jctc.9b00825$$n3$$p1953-1967$$tJournal of chemical theory and computation$$v16$$x1549-9626$$y2020
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/Autorenmanuskript%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf$$yPublished on 2020-01-22. Available in OpenAccess from 2021-01-22.$$zStatID:(DE-HGF)0510
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/Supporting%20Information%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf$$yRestricted
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf$$yRestricted
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/Autorenmanuskript%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-01-22. Available in OpenAccess from 2021-01-22.$$zStatID:(DE-HGF)0510
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/Supporting%20Information%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/TopModel_rev3_final.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000873040 8564_ $$uhttps://juser.fz-juelich.de/record/873040/files/TopModel_rev3_final.pdf?subformat=pdfa$$xpdfa$$yRestricted$$zStatID:(DE-HGF)0599
000873040 909CO $$ooai:juser.fz-juelich.de:873040$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172053$$aForschungszentrum Jülich$$b3$$kFZJ
000873040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich$$b5$$kFZJ
000873040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144510$$aForschungszentrum Jülich$$b6$$kFZJ
000873040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b8$$kFZJ
000873040 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000873040 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x1
000873040 9141_ $$y2020
000873040 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873040 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000873040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2017
000873040 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2017
000873040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873040 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873040 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873040 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873040 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873040 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873040 920__ $$lyes
000873040 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000873040 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000873040 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x2
000873040 9801_ $$aFullTexts
000873040 980__ $$ajournal
000873040 980__ $$aVDB
000873040 980__ $$aUNRESTRICTED
000873040 980__ $$aI:(DE-Juel1)JSC-20090406
000873040 980__ $$aI:(DE-Juel1)NIC-20090406
000873040 980__ $$aI:(DE-Juel1)ICS-6-20110106
000873040 981__ $$aI:(DE-Juel1)IBI-7-20200312