001     873040
005     20210130004350.0
024 7 _ |a 10.1021/acs.jctc.9b00825
|2 doi
024 7 _ |a 1549-9618
|2 ISSN
024 7 _ |a 1549-9626
|2 ISSN
024 7 _ |a 2128/24531
|2 Handle
024 7 _ |a altmetric:75163703
|2 altmetric
024 7 _ |a pmid:31967823
|2 pmid
024 7 _ |a WOS:000519337700048
|2 WOS
037 _ _ |a FZJ-2020-00491
082 _ _ |a 610
100 1 _ |a Mulnaes, Daniel
|0 P:(DE-HGF)0
|b 0
245 _ _ |a TopModel: Template-based protein structure prediction at low sequence identity using top-down consensus and deep neural networks
260 _ _ |a Washington, DC
|c 2020
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583850694_498
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Knowledge of protein structures is essential to understand the proteins’ functions, evolution, dynamics, stabilities, interactions, and for data-driven protein- or drug-design. Yet, experimental structure determination rates are far exceeded by that of next-generation sequencing. Computational structure prediction seeks to alleviate this problem, and the Critical Assessment of protein Structure Prediction (CASP) has shown the value of consensus- and meta-methods that utilize complementary algorithms. However, traditionally, such methods employ majority voting during template selection and model averaging during refinement, which can drive the model away from the native fold if it is underrepresented in the ensemble. Here, we present TopModel, a fully automated meta-method for protein structure prediction. In contrast to traditional consensus- and meta-methods, TopModel uses top-down consensus and deep neural networks to select templates and identify and correct wrongly modeled regions. TopModel combines a broad range of state-of-the-art methods for threading, alignment and model quality estimation and provides a versatile work-flow and toolbox for template-based structure prediction. TopModel shows a superior template selection, alignment accuracy, and model quality for template-based structure prediction on the CASP10-12 datasets. TopModel was validated by prospective predictions of the nisin resistance protein NSR protein from S. agalactiae and LipoP from C. difficile, showing far better agreement with experimental data than any of its constituent primary predictors. These results, in general, demonstrate the utility of TopModel for protein structure prediction and, in particular, show how combining computational structure prediction with sparse or low-resolution experimental data can improve the final model.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 1
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Porta, Nicola
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Clemens, Rebecca
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Apanasenko, Irina
|0 P:(DE-Juel1)172053
|b 3
|u fzj
700 1 _ |a Reiners, Jens
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gremer, Lothar
|0 P:(DE-Juel1)145165
|b 5
|u fzj
700 1 _ |a Neudecker, Philipp
|0 P:(DE-Juel1)144510
|b 6
|u fzj
700 1 _ |a Smits, Sander H. J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 8
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.jctc.9b00825
|g p. acs.jctc.9b00825
|0 PERI:(DE-600)2166976-4
|n 3
|p 1953-1967
|t Journal of chemical theory and computation
|v 16
|y 2020
|x 1549-9626
856 4 _ |y Published on 2020-01-22. Available in OpenAccess from 2021-01-22.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/873040/files/Autorenmanuskript%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf
856 4 _ |u https://juser.fz-juelich.de/record/873040/files/Supporting%20Information%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/873040/files/TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf
|y Restricted
856 4 _ |y Published on 2020-01-22. Available in OpenAccess from 2021-01-22.
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/873040/files/Autorenmanuskript%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/873040/files/Supporting%20Information%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/873040/files/TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/873040/files/TopModel_rev3_final.pdf
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/873040/files/TopModel_rev3_final.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:873040
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172053
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145165
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144510
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM THEORY COMPUT : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEM THEORY COMPUT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21