| Home > Publications database > TopModel: Template-based protein structure prediction at low sequence identity using top-down consensus and deep neural networks > print |
| 001 | 873040 | ||
| 005 | 20210130004350.0 | ||
| 024 | 7 | _ | |a 10.1021/acs.jctc.9b00825 |2 doi |
| 024 | 7 | _ | |a 1549-9618 |2 ISSN |
| 024 | 7 | _ | |a 1549-9626 |2 ISSN |
| 024 | 7 | _ | |a 2128/24531 |2 Handle |
| 024 | 7 | _ | |a altmetric:75163703 |2 altmetric |
| 024 | 7 | _ | |a pmid:31967823 |2 pmid |
| 024 | 7 | _ | |a WOS:000519337700048 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-00491 |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Mulnaes, Daniel |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a TopModel: Template-based protein structure prediction at low sequence identity using top-down consensus and deep neural networks |
| 260 | _ | _ | |a Washington, DC |c 2020 |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1583850694_498 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Knowledge of protein structures is essential to understand the proteins’ functions, evolution, dynamics, stabilities, interactions, and for data-driven protein- or drug-design. Yet, experimental structure determination rates are far exceeded by that of next-generation sequencing. Computational structure prediction seeks to alleviate this problem, and the Critical Assessment of protein Structure Prediction (CASP) has shown the value of consensus- and meta-methods that utilize complementary algorithms. However, traditionally, such methods employ majority voting during template selection and model averaging during refinement, which can drive the model away from the native fold if it is underrepresented in the ensemble. Here, we present TopModel, a fully automated meta-method for protein structure prediction. In contrast to traditional consensus- and meta-methods, TopModel uses top-down consensus and deep neural networks to select templates and identify and correct wrongly modeled regions. TopModel combines a broad range of state-of-the-art methods for threading, alignment and model quality estimation and provides a versatile work-flow and toolbox for template-based structure prediction. TopModel shows a superior template selection, alignment accuracy, and model quality for template-based structure prediction on the CASP10-12 datasets. TopModel was validated by prospective predictions of the nisin resistance protein NSR protein from S. agalactiae and LipoP from C. difficile, showing far better agreement with experimental data than any of its constituent primary predictors. These results, in general, demonstrate the utility of TopModel for protein structure prediction and, in particular, show how combining computational structure prediction with sparse or low-resolution experimental data can improve the final model. |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
| 536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 1 |
| 536 | _ | _ | |a Forschergruppe Gohlke (hkf7_20170501) |0 G:(DE-Juel1)hkf7_20170501 |c hkf7_20170501 |f Forschergruppe Gohlke |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Porta, Nicola |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Clemens, Rebecca |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Apanasenko, Irina |0 P:(DE-Juel1)172053 |b 3 |u fzj |
| 700 | 1 | _ | |a Reiners, Jens |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Gremer, Lothar |0 P:(DE-Juel1)145165 |b 5 |u fzj |
| 700 | 1 | _ | |a Neudecker, Philipp |0 P:(DE-Juel1)144510 |b 6 |u fzj |
| 700 | 1 | _ | |a Smits, Sander H. J. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Gohlke, Holger |0 P:(DE-Juel1)172663 |b 8 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1021/acs.jctc.9b00825 |g p. acs.jctc.9b00825 |0 PERI:(DE-600)2166976-4 |n 3 |p 1953-1967 |t Journal of chemical theory and computation |v 16 |y 2020 |x 1549-9626 |
| 856 | 4 | _ | |y Published on 2020-01-22. Available in OpenAccess from 2021-01-22. |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/873040/files/Autorenmanuskript%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/873040/files/Supporting%20Information%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/873040/files/TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf |y Restricted |
| 856 | 4 | _ | |y Published on 2020-01-22. Available in OpenAccess from 2021-01-22. |x pdfa |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/873040/files/Autorenmanuskript%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa |
| 856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/873040/files/Supporting%20Information%20TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa |y Restricted |
| 856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/873040/files/TopModel%20Template-Based%20Protein%20Structure%20Prediction%20at%20Low%20Sequence%20Identity%20Using%20Top-Down%20Consensus%20and%20Deep%20Neural%20Networks.pdf?subformat=pdfa |y Restricted |
| 856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://juser.fz-juelich.de/record/873040/files/TopModel_rev3_final.pdf |
| 856 | 4 | _ | |y Restricted |x pdfa |z StatID:(DE-HGF)0599 |u https://juser.fz-juelich.de/record/873040/files/TopModel_rev3_final.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:873040 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172053 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)145165 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)144510 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)172663 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CHEM THEORY COMPUT : 2017 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J CHEM THEORY COMPUT : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)ICS-6-20110106 |k ICS-6 |l Strukturbiochemie |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
| 981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|