000873066 001__ 873066
000873066 005__ 20220930130228.0
000873066 0247_ $$2doi$$a10.1002/adma.201907208
000873066 0247_ $$2ISSN$$a0935-9648
000873066 0247_ $$2ISSN$$a1521-4095
000873066 0247_ $$2Handle$$a2128/24498
000873066 0247_ $$2pmid$$apmid:31975474
000873066 0247_ $$2WOS$$aWOS:000508922400001
000873066 037__ $$aFZJ-2020-00515
000873066 041__ $$aEnglish
000873066 082__ $$a660
000873066 1001_ $$0P:(DE-Juel1)145420$$aWei, Xian‐Kui$$b0$$eCorresponding author
000873066 245__ $$aAn Unconventional Transient Phase with Cycloidal Order of Polarization in Energy‐Storage Antiferroelectric PbZrO 3
000873066 260__ $$aWeinheim$$bWiley-VCH$$c2020
000873066 3367_ $$2DRIVER$$aarticle
000873066 3367_ $$2DataCite$$aOutput Types/Journal article
000873066 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583914002_6039
000873066 3367_ $$2BibTeX$$aARTICLE
000873066 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873066 3367_ $$00$$2EndNote$$aJournal Article
000873066 520__ $$aAntiferroelectric‐based dielectric capacitors are receiving tremendous attention for their outstanding energy‐storage performance and extraordinary flexibility in collecting pulsed powers. Nevertheless, the in situ atomic‐scale structural‐evolution pathway, inherently coupling to the energy storage process, has not been elucidated for the ultimate mechanistic understanding so far. Here, time‐ and atomic‐resolution structural phase evolution in antiferroelectric PbZrO3 during storage of energy from the electron‐beam illumination is reported. By employing state‐of‐the‐art negative‐spherical‐aberration imaging technique, the quantitative transmission electron microscopy study presented herein clarifies that the hierarchical evolution of polar oxygen octahedra associated with the unit‐cell volume change and polarization rotation accounts for the stepwise antiferroelectric‐to‐ferroelectric phase transition. In particular, an unconventional ferroelectric category—the ferrodistortive phase characteristic of a unique cycloidal polarization order—is established during the dynamic structure investigation. Through clarifying the atomic‐scale phase transformation pathway, findings of this work unveil a new territory to explore novel ferrodistortive phases in energy‐storage materials with the nonpolar‐to‐polar phase transitions.
000873066 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000873066 588__ $$aDataset connected to CrossRef
000873066 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b1$$ufzj
000873066 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b2$$ufzj
000873066 7001_ $$0P:(DE-HGF)0$$aRoleder, Krystian$$b3
000873066 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b4$$ufzj
000873066 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5$$ufzj
000873066 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201907208$$gp. 1907208 -$$n9$$p1907208 -$$tAdvanced materials$$v32$$x1521-4095$$y2020
000873066 8564_ $$uhttps://juser.fz-juelich.de/record/873066/files/Invoice_5502306.pdf
000873066 8564_ $$uhttps://juser.fz-juelich.de/record/873066/files/Wei_et_al-2020-Advanced_Materials.pdf$$yOpenAccess
000873066 8564_ $$uhttps://juser.fz-juelich.de/record/873066/files/Wei_et_al-2020-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873066 8564_ $$uhttps://juser.fz-juelich.de/record/873066/files/Invoice_5502306.pdf?subformat=pdfa$$xpdfa
000873066 8767_ $$92019-12-19$$d2020-01-24$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padma.201907208
000873066 8767_ $$85502306$$92020-03-05$$d2020-03-11$$eCover$$jZahlung erfolgt$$padma.201907208
000873066 909CO $$ooai:juser.fz-juelich.de:873066$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000873066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b0$$kFZJ
000873066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b1$$kFZJ
000873066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b2$$kFZJ
000873066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b4$$kFZJ
000873066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000873066 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000873066 9141_ $$y2020
000873066 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873066 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000873066 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873066 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000873066 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000873066 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873066 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873066 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873066 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873066 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873066 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873066 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873066 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873066 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873066 920__ $$lyes
000873066 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000873066 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x1
000873066 980__ $$ajournal
000873066 980__ $$aVDB
000873066 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000873066 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000873066 980__ $$aAPC
000873066 980__ $$aUNRESTRICTED
000873066 9801_ $$aAPC
000873066 9801_ $$aFullTexts