001     873066
005     20220930130228.0
024 7 _ |a 10.1002/adma.201907208
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 2128/24498
|2 Handle
024 7 _ |a pmid:31975474
|2 pmid
024 7 _ |a WOS:000508922400001
|2 WOS
037 _ _ |a FZJ-2020-00515
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Wei, Xian‐Kui
|0 P:(DE-Juel1)145420
|b 0
|e Corresponding author
245 _ _ |a An Unconventional Transient Phase with Cycloidal Order of Polarization in Energy‐Storage Antiferroelectric PbZrO 3
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583914002_6039
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Antiferroelectric‐based dielectric capacitors are receiving tremendous attention for their outstanding energy‐storage performance and extraordinary flexibility in collecting pulsed powers. Nevertheless, the in situ atomic‐scale structural‐evolution pathway, inherently coupling to the energy storage process, has not been elucidated for the ultimate mechanistic understanding so far. Here, time‐ and atomic‐resolution structural phase evolution in antiferroelectric PbZrO3 during storage of energy from the electron‐beam illumination is reported. By employing state‐of‐the‐art negative‐spherical‐aberration imaging technique, the quantitative transmission electron microscopy study presented herein clarifies that the hierarchical evolution of polar oxygen octahedra associated with the unit‐cell volume change and polarization rotation accounts for the stepwise antiferroelectric‐to‐ferroelectric phase transition. In particular, an unconventional ferroelectric category—the ferrodistortive phase characteristic of a unique cycloidal polarization order—is established during the dynamic structure investigation. Through clarifying the atomic‐scale phase transformation pathway, findings of this work unveil a new territory to explore novel ferrodistortive phases in energy‐storage materials with the nonpolar‐to‐polar phase transitions.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 1
|u fzj
700 1 _ |a Du, Hongchu
|0 P:(DE-Juel1)145710
|b 2
|u fzj
700 1 _ |a Roleder, Krystian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 4
|u fzj
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 5
|u fzj
773 _ _ |a 10.1002/adma.201907208
|g p. 1907208 -
|0 PERI:(DE-600)1474949-x
|n 9
|p 1907208 -
|t Advanced materials
|v 32
|y 2020
|x 1521-4095
856 4 _ |u https://juser.fz-juelich.de/record/873066/files/Invoice_5502306.pdf
856 4 _ |u https://juser.fz-juelich.de/record/873066/files/Wei_et_al-2020-Advanced_Materials.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873066/files/Wei_et_al-2020-Advanced_Materials.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873066/files/Invoice_5502306.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:873066
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145710
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV MATER : 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21