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We consider the breaking of Galilean invariance due to different lattice cutoff effects in moving frames

and a nonlocal smearing parameter, which is used in the construction of the nuclear lattice interaction. The

dispersion relation and neutron-proton scattering phase shifts are used to investigate the Galilean invariance

breaking effects and ways to restore it. For S-wave channels, 1S0 and 3S1, we present the neutron-proton scattering

phase shifts in moving frames calculated using both Lüscher’s formula and the spherical wall method, as well

as the dispersion relation. For the P and D waves, we present the neutron-proton scattering phase shifts in

moving frames calculated using the spherical wall method. We find that the Galilean invariance breaking effects

stemming from the lattice artifacts partially cancel those caused by the nonlocal smearing parameter. Due to

this cancellation, the Galilean invariance breaking effect is small, and the Galilean invariance can be restored by

introducing Galilean invariance restoration operators.

DOI: 10.1103/PhysRevC.99.064001

I. INTRODUCTION

Chiral effective field theory (EFT) allows one to construct

the nuclear force systematically in powers of Q/�χ , where Q

is a soft scale (pion mass, transferred momenta, etc.), while

�χ (≈0.6 GeV) is the pertinent hard scale [1–4]. In chiral

EFT, the most important contribution appears at leading order

(LO) or order (Q/�χ)0, the second most important contribu-

tion at next-to-leading order (NLO) or order (Q/�χ)2, the

third most important contribution at next-to-next-to-leading

order (N2LO) or order (Q/�χ)3, and so on. According to the

power counting of chiral EFT, the LO nucleon-nucleon (NN)

interaction includes the static one-pion-exchange potential

(OPEP) as well as momentum-independent contact interac-

tions, the NLO NN interaction includes the leading two-pion-

exchange potential (TPEP) and contact interactions with two

derivatives, the N2LO interaction includes only corrections

to the TPEP, and the N3LO NN interaction includes further

corrections to the OPEP and sub-leading TPEP as well as

contact interactions with four derivatives. See Refs. [5,6] for

review papers on chiral nuclear EFT.

In the past decades, nuclear lattice effective field theory

(NLEFT) combining Monte Carlo simulations on a space-

time grid and nuclear forces derived within chiral EFT has

become a powerful tool for ab initio calculations of the

few- and many-body problems. NLEFT has been widely used

to study nuclear structure [7–9] and nuclear reactions [10].

See Ref. [11] for an early review article. Since NLEFT is

powerful for ab initio calculations, getting an efficient and

precise nuclear force is particularly important, which is a more

difficult task than in the continuum due to the lattice artifacts

stemming from the nonzero lattice spacing. To reduce the

lattice artifacts, nonlocally smeared operators were introduced

in Ref. [12]. With only a few parameters, the binding energies

of nuclei with nucleons A � 20 are produced with good pre-

cision. In Ref. [13], these nonlocally smeared operators were

extended up to next-to-next-to-next-to-leading order (N3LO)

in chiral EFT for neutron-proton scattering.

However, in a lattice-regularized system, finite-lattice

spacing effects are different in moving frames. This breaks

the Galilean invariance [14], which is the statement that the

laws of Newtonian physics for a nonrelativistic system are

independent of the velocity of the center of mass. There is also

some breaking of Galilean invariance caused by the nonlocal

smearing parameter sNL we use in the construction of the

lattice interaction as it induces the explicit dependence of the

lattice interaction on the momentum of the center of mass.

In the present work, we focus on the lattice calculations with

lattice spacing a = 1.32 fm and the N3LO nucleon-nucleon

interactions from Ref. [13]. We quantify the effects of

Galilean invariance breaking by analyzing the dispersion

relation and neutron-proton scattering phase shifts in moving

frames. We also show how to restore the Galilean invariance

by including the contribution of the Galilean invariance

restoration operators. This is the main finding of this paper

that will be used in future NLEFT investigations.
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The paper is organized as follows. After the Introduction,

in Sec. II we will present the formalism including the lattice

nucleon-nucleon interaction up to N3LO in chiral EFT, the

Lüscher’s formula and spherical wall method used to extract

the scattering phase shifts. Then, we present the numerical re-

sults and make discussions in Sec. III. Finally, we summarize

our results in Sec. IV.

II. FORMALISM

Before present the details of our formalism, it is useful to

state some conventions appearing many times in the present

paper. Throughout this work we use a for the spatial lattice

spacing, L denotes the number of lattice points in each spacial

direction, and P is the momentum of the center of mass.

All parameters and operators are first expressed in lattice

units, which correspond to the physical values multiplied by

appropriate powers of a. Our final results are presented in

physical units.

Different from our previous calculations, where the trans-

fer matrix formalism was used, here we utilize the Hamilto-

nian formalism since the transfer matrix formalism can induce

additional breaking of Galilean invariance due to the nonzero

temporal lattice spacing. In our calculation, the Hamiltonian

has the form,

H = Hfree + V short
2N + V

long

2N . (1)

For the free Hamiltonian we use an O(a4)-improved action of

the form [11],

Hfree =
49

12mN

∑

n

a†(n)a(n) −
3

4mN

∑

n,i

∑

〈n′ n〉i

a†(n′)a(n)

+
3

40mN

∑

n,i

∑

〈〈n′ n〉〉i

a†(n′)a(n)

−
1

180mN

∑

n,i

∑

〈〈〈n′ n〉〉〉i

a†(n′)a(n), (2)

where a† and a are the creation and annihilation operators for

a nucleon, respectively, and mN denotes the nucleon mass.

The number of brackets under the sum refer to the nearest,

next-to-nearest and next-to-next-to-nearest neighbors used in

the representation of the derivatives. V short
2N is the short-range

nucleon-nucleon interaction accounted by contact interactions

while V
long

2N denotes the long-range NN interaction provided

by the pion-exchange potentials.

A. Nucleon-nucleon interaction on the lattice

Up to N3LO in chiral EFT, the short-range nucleon-

nucleon interaction includes contact interactions at LO, NLO,

and N3LO,

V short
2N = V

(Q/�χ )0

contact + V
(Q/�χ )2

contact + V
(Q/�χ )4

contact . (3)

At LO, two nonlocally smeared contact operators were intro-

duced in Ref. [13]. These read

V1S0,(Q/�χ )0 =
∑

Iz=−1,0,1

[

O
0,sNL

0,0,0,0,1,Iz
(n)

]†
O

0,sNL

0,0,0,0,1,Iz
(n), (4)

for the 1S0 channel, and

V3S1,(Q/�χ )0 =
∑

Jz=−1,0,1

[

O
0,sNL

1,0,1,Jz,0,0(n)
]†

O
0,sNL

1,0,1,Jz,0,0(n), (5)

for the 3S1 channel. We refer to Appendix for the definitions

of the pair creation operator O† and pair annihilation operator

O. The contact operators at NLO and N3LO can be written

in a similar manner. Their specific expressions, which are not

given here for simplicity can be found in Ref. [13].

Additionally, we also include an SU(4)-invariant short-

range operator at LO, which has been shown to be important

for nuclear binding [12,15],

V0 =
C0

2
:
∑

n′,n,n′′

∑

i′, j′

a
sNL†
i′, j′ (n′)asNL

i′, j′ (n
′) fsL

(n′ − n) fsL
(n − n′′)

×
∑

i′′, j′′

a
sNL†
i′′, j′′ (n

′′)asNL

i′′, j′′ (n
′′) :, (6)

where :: denotes normal ordering, and the local smearing

function fsL
(n) is defined as

fsL
=











1, |n| = 0,

sL, |n| = 1,

0, otherwise.

(7)

The index i corresponds to nucleon spin, and the index j corre-

sponds to nucleon isospin. The dressed creation operator asNL†

and annihilation operator asNL are defined, respectively, as

a
sNL†
i, j (n) = a

†
i, j (n) + sNL

∑

|n′|=1

a
†
i, j (n + n′) (8)

and

a
sNL

i, j (n) = ai, j (n) + sNL

∑

|n′|=1

ai, j (n + n′). (9)

We use the dressed creation (annihilation) operator to create

(annihilate) the nucleon placed at the exact lattice site as

well as the nucleon located at its nearest-neighbor lattice

sites. In this manner, some of the lattice artifacts induced

by the nonzero lattice spacing can be removed. However,

the nonzero value of sNL leads to a breaking of Galilean

invariance because it makes the NN interaction depend on the

velocity of the center of mass.

For the long-range interaction, we include the OPEP at LO,

and the two-pion-exchange potentials at NLO, N2LO, and

N3LO.

V
long

2N = V
(Q/�χ )0

OPE + V
(Q/�χ )2

TPE + V
(Q/�χ )3

TPE + V
(Q/�χ )4

TPE . (10)

The one-pion exchange potential VOPE has the form

VOPE = −
g2

A

8F 2
π

∑

n′,n,S′,S,I

: ρS′,I (n′) fS′S (n′ − n)ρS,I (n) :, (11)
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where fS′S is defined as

fS′S (n′−n) =
1

L3

∑

q

Q(qS′ )Q(qS ) exp
[

− iq · (n′ − n) − bπ

(

q2 + M2
π

)]

q2 + M2
π

, (12)

and each lattice momentum component qS is an integer multi-

plied by 2π/L. The function Q(qS ) is given by

Q(qS ) = 3
2

sin(qS ) − 3
10

sin(2qS ) + 1
30

sin(3qS ), (13)

which equals qS up to correction of order q7
S . We use

the definition of Eq. (13) for the nucleon momentum on

the lattice to remove the finite lattice volume effects. We in-

clude the parameter bπ to regularize the short-range behavior

of the OPEP. As in previous calculations, we set bπ = 0.25 in

lattice units. For calculations with lattice spacing a = 1.32 fm,

this is equivalent to � = 300 MeV in the form factor

F (q) = exp

[

−
(

q2 + m2
π

)

�2

]

. (14)

We use the combination q2 + M2
π in the exponential as sug-

gested in Ref. [16] as a momentum-space regulator, which

does not affect the long-distance behavior of the pion-

exchange potential.

As we are solving nonrelativistic Schrödinger equations,

we neglect the relativistic corrections to the NN force at

N3LO stemming from the 1/m2
N corrections to the static

OPEP and 1/mN corrections to static TPEP including spin-

orbital interacting terms [16,17]. As a result, the long-range

pion-exchange potential is totally local and independent of

the velocity of the center of mass. Therefore, this part does not

break Galilean invariance. Instead of providing the lengthy ex-

pressions of two-pion-exchange potential, we refer the reader

to Refs. [16–19] for the specific expressions.

B. Galilean invariance restoration operators

To restore the Galilean invariance for the two-nucleon

system, we introduce the pair hopping terms. We first illustrate

with pointlike operators corresponding to the product of total

nucleon densities,

VGIR = V 0
GIR + V 1

GIR + V 2
GIR, (15)

where

V 0
GIR = C0

GIR

∑

n,i, j,i′, j′

a
†
i, j (n)a†

i′, j′ (n)ai′, j′ (n)ai, j (n) (16)

denotes no hopping,

V 1
GIR = C1

GIR

∑

n,i, j,i′, j′

∑

|n′|=1

a
†
i, j (n+n′)a†

i′, j′ (n+n′)ai′, j′ (n)ai, j (n)

(17)

is the nearest-neighbor hopping term, and

V 2
GIR = C2

GIR

∑

n,i, j,i′, j′

∑

|n′|=
√

2

a
†
i, j (n+n′)a†

i′, j′ (n+n′)ai′, j′ (n)ai, j (n)

(18)

is the next-to-nearest-neighbor hopping term for the nucleon-

nucleon pair.

Let us write |P〉 as a two-body bound-state wave function

with total momentum P. We note that 〈P|V 0
GIR|P〉 is indepen-

dent of P, and so we have

〈P|V 0
GIR|P〉 = C0

GIR〈0|V 0
GIR|0〉, (19)

where |0〉 is the two-body bound-state wave function with zero

total momentum. Furthermore,

〈P|V 1
GIR|P〉 = 2C1

GIR[cos(Px ) + cos(Py) + cos(Pz )]〈0|V 0
GIR|0〉,

(20)

and

〈P|V 2
GIR|P〉 = 4[cos(Px ) cos(Py) + cos(Py) cos(Pz )

+ cos(Pz ) cos(Px )]〈0|V 0
GIR|0〉. (21)

Combining the hopping term with the contact terms we can

construct the GIR operators. For simplicity, we only take the

lowest-order contact operator of each channel to construct

the GIR operators. For example, the GIR operator for the 1S0

channel reads

V
1S0

GIR = C
1S0

GIR,0

∑

n

∑

Iz=−1,0,1

[

O
0,sNL

0,0,0,0,1,Iz
(n)

]†
O

0,sNL

0,0,0,0,1,Iz
(n) + C

1S0

GIR,1

∑

n

∑

|n′|=1

∑

Iz=−1,0,1

[

O
0,sNL

0,0,0,0,1,Iz
(n + n′)

]†
O

0,sNL

0,0,0,0,1,Iz
(n)

+C
1S0

GIR,2

∑

n

∑

|n′|=
√

2

∑

Iz=−1,0,1

[

O
0,sNL

0,0,0,0,1,Iz
(n + n′)

]†
O

0,sNL

0,0,0,0,1,Iz
(n), (22)

whereas that for the 1P1 channel is

V
1P1

GIR = C
1P1

GIR,0

∑

n

∑

Jz=−1,0,1

[

O
0,sNL

0,1,1,Jz,0,0(n)
]†

O
0,sNL

0,1,1,Jz,0,0(n) + C
1P1

GIR,1

∑

n

∑

|n′|=1

∑

Jz=−1,0,1

[

O
0,sNL

0,1,1,Jz,0,0(n + n′)
]†

O
0,sNL

0,1,1,Jz,0,0(n)

+C
1P1

GIR,2

∑

n

∑

|n′|=
√

2

∑

Jz=−1,0,1

[

O
0,sNL

0,1,1,Jz,0,0(n + n′)
]†

O
0,sNL

0,1,1,Jz,0,0(n). (23)
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Using these GIR operators, we can restore Galilean invariance

for each channel by finely tuning CGIR,i(i = 0, 1, 2) with the

constraint,

CGIR,0 + 6CGIR,1 + 12CGIR,2 = 0, (24)

which is the requirement that the GIR correction should be

vanishing for zero total momentum. Specifically, we take the

Nijmegen phase shifts as input to determine the LECs for each

channel in the rest frame, and then determine the coefficients

CGIR,i by fitting the phase shifts in the boosted frames, where

the lattice results in the rest frame are taken as input. For

example, two LECs for 1P1 are fixed at N3LO without GIR,

then two additional coefficients, CGIR,i, are used to restore the

Galilean invariance.

C. Lüscher’s formula

In Ref. [20], Lüscher derived a simple formula connecting

the two-body S-wave scattering phase shift δ0 with the energy

levels calculated in the lattice framework. It reads

exp(2iδ0(k)) =
ζ00(1; q2) + iπ3/2q

ζ00(1; q2) − iπ3/2q
, (25)

where

q =
kL

2π
, (26)

and

ζ00(s; q2) =
1

√
4π

∑

n∈Z3

(n2 − q2)−s (27)

is the ζ function, which is convergent when Re(s) > 3/2, and

can be analytically continued to s = 1. Then, this formula was

generalized to moving frames with center-of-mass momentum

P = (2π/L)k [21–24],

δ0(k) = arctan

(

γ qπ3/2

ζ d
00(1; q2)

)

, (28)

where

ζ d
00(s; q2) =

1
√

4π

∑

r∈Pd

(r2 − q2)−s, (29)

is the generalized ζ function. The summation region Pd is

defined as

Pd = {r ∈ R3|r = γ −1(n + d/2), n ∈ Z3}, (30)

where γ is the Lorentz factor and γ −1n is the shorthand

notation for γ −1n‖ + n⊥. It is easy to check that formulas

Eq. (25) and (28) are the same when P = 0. The expressions

for the numerical calculation of the generalized ζ function can

be found in Refs. [21,25]. Refer to Refs. [25–28] for several

interesting lattice QCD calculations in the moving frames.

In our calculation, the Lüscher formula is applied to calcu-

late the neutron-proton scattering phase shifts for only the S-

wave channels. This is done because Lüscher’s formula is not

an efficient method to extract the scattering phase shifts for the

P, D, and higher partial waves. Even for 3S1, we find a small

discrepancy between the results using Lüscher’s formula and

those using the spherical wall method. This is because there

is a systematic error in the mixing of different channels when

using the Lüscher’s formula. We will come back to this later.

D. Spherical wall method

In addition to Lüscher’s formula, the spherical wall method

is another approach to extract the scattering phase shifts.

Differently from Lüscher’s formula connecting the scattering

phase shifts with the energy levels, the spherical wall method

extracts the scattering phase shifts from the wave function.

To calculate the scattering phase shifts and mixing angles

using the spherical wall method, we first construct radial wave

functions in a moving frame with momentum P through the

spherical harmonics with quantum numbers (l, lz ) [29,30],

|r〉l,lz
P =

∑

r̂′

exp(−iP · r′)Yl,lz (r̂
′)δ|r′|=r |r′〉, (31)

where r̂′ runs over all lattice sites having the same radial

lattice distance, and P = (2π/L)k is the quantized center-of-

mass momentum on the lattice. Using this definition for the

radial wave function, the Hamiltonian matrix over a three-

dimensional lattice can be reduced to a one-dimensional radial

Hamiltonian, Hr,r′ → Hr,r′ .

After solving the Schödinger equation, the phase shifts and

mixing angles can be extracted from the radial wave function

in the region where the NN force is vanishing. In this range,

the wave function is a superposition of the incoming plane

wave and outgoing radial wave which can be expanded as

[13,29]

〈r|k, l〉 = A jh
(1)
l

(kr) + B jh
(2)
l

(kr), (32)

where h
(1)
l

(kr) and h
(2)
l

(kr) are the spherical Hankel functions.

k =
√

2µE with µ the reduced mass and E the relative energy

of the two-nucleon system. The scattering coefficients A j and

B j satisfy the relations,

B j = S jA j, (33)

where S j = exp(2iδ j ) is the S matrix and δ j is the phase shift.

The phase shift is determined by setting

δ j =
1

2i
log

(

B j

A j

)

. (34)

In the case of the coupled channels with j > 0, both of

the coupled partial waves, l = j − 1 and l = j + 1, satisfy

Eq. (33), and the S matrix couples the two channels to-

gether. Throughout this work we adopt the so-called Stapp

parametrization of the phase shifts and mixing angles for the

coupled channels [31],

S =

[

cos(2ǫ) exp
(

2iδ
1 j

j−1

)

i sin(2ǫ) exp
(

iδ
1 j

j−1 + iδ
1 j

j+1

)

i sin 2ǫ exp
(

iδ
1 j

j−1 + iδ
1 j

j+1

)

cos(2ǫ) exp
(

2iδ
1 j

j+1

)

]

. (35)
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FIG. 1. The ratios of the lattice and continuum energy as a function of the momentum of the center of mass. (a) 1S0; (b) 3S1. w/ means with

GIR whereas w/o means without GIR.

III. NUMERICAL RESULTS AND DISCUSSION

In our calculation, we first determine the low-energy con-

stants by matching the calculated neutron-proton scattering

phase shifts to those from the Nijmegen partial analysis. Then,

we boost the two-nucleon system to a moving frame with

momenta P = (2π/L)k and calculate the phase shifts again.

From the difference between these two results, we can read

off the amount of the Galilean invariance breaking (GIB). We

finally restore the Galilean invariance by tuning the coefficient
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FIG. 2. Neutron-proton scattering phase shifts of 1S0 as a function of the relative momenta between the proton and neutron. The Lüscher

formula is used to extract the scattering phase shifts. Top: LO results; bottom: N3LO results. w/o means without GIR corrections while w/

denotes the results after restoring the Galilean invariance. To study the finite volume effects, we did calculations using different size boxes,

L = 14a, 16a, 18a for the left two columns and L = 24a, 26a, 28a for the right two columns. In the generalization of the Lüscher’s formula

to the nonrest frames, the symmetry of the subgroup of the cubic group is applied. However, this symmetry is broken due to the breaking of the

Galilean invariance. This leads to the rapid change of the phase shifts at chiral LO. We can see that this behavior goes away after the Galilean

invariance is restored.
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FIG. 3. Neutron-proton scattering phase shifts of 3S1 as a function of the relative momenta between the proton and neutron. The Lüscher

formula is used to extract the scattering phase shifts. w/o means without GIR corrections while w/ denotes the results after restoring the

Galilean invariance. To study the finite volume effects, we did calculations using different size boxes, L = 14a, 16a, 18a for the left two

columns and L = 24a, 26a, 28a for the right two columns. Top: LO results; bottom: N3LO results.

CGIR,i to make the results independent of P. Since the disper-

sion relation is another good physical quantity to test the GIB,

we also calculate it for both S-wave channels, 1S0 and 3S1.

For lattice parameters, we use the same values as those

in one of our previous calculations in Ref. [13], namely, the

spatial lattice spacing a = 1.32 fm, coefficient for the SU(4)

contact potential C0 = −0.04455 l.u. (lattice units), local

smearing parameter sL = 0.16985 l.u., and nonlocal smearing

parameter sNL = 0.18566 l.u.. We use mp = 938.272 MeV

and mn = 939.565 MeV for the proton and the neutron

mass, respectively. For the charged pion mass, we take

Mπ± = 139.57 MeV while for the neutral pion mass, we

take Mπ0 = 134.97 MeV. For the averaged pion mass we use

Mπ = 138.03 MeV. Additionally, we use Fπ = 92.1 MeV for

the pion decay and gA = 1.287 from the Goldberger-Treiman

relation using the pion-nucleon coupling constant from

Ref. [32] for the nucleon axial coupling constant, respectively,

and c1 = −1.10(3) GeV−1, c2 = 3.57(4) GeV−1, c3 =
−5.54(6) GeV−1, and c4 = 4.17(4) GeV−1 [33], for

the low-energy constants appearing in the TPEP. For

the pion-nucleon LECs di entering the chiral N3LO

two-pion-exchange potential, we adopt d̄1 + d̄2 =
1.04 GeV−2, d̄3 = −0.48 GeV−2, d̄5 = 0.14 GeV−2, and

d̄14 − d̄15 = −1.90 GeV−2 [16].

A. Dispersion relation for the S waves

We calculate the dispersion relation for the two S-wave

channels, 1S0 and 3S1, of the proton-neutron system in a cubic

box of volume V = (32a)3 with lattice spacing a = 1.32 fm.

To make the effects better visible, we plot the ratios of the

lattice and continuum energy as a function of the center-of-

mass momentum. The results are shown in Fig. 1. EL/EC is

the ratio of the lattice and continuum energy. The left plot

is for 1S0 while the right plot gives 3S1. We present the results

without GIR at both LO and N3LO, which are used to read off

the amount of Galilean invariance breaking. We also provide

the results including GIR corrections at N3LO.

From the plots, the lattice results for 1S0 are closer to the

continuum results that those for 3S1. This is because the state

we are boosting in the 1S0 channel is a continuum state rather

than bound state. The almost perfect dispersion suggests that

it is not an efficient tool to investigate the GIB effect for 1S0.

Later, we will apply the proton-neutron scattering phase to

study GIB in the 1S0 channel. Differently from the 1S0 case,

the dispersion relation is very useful to detect GIB in the 3S1

channel as the ground state in this case is a bound state. From

the plots, it is clear that compared to the LO result, the N3LO

values are closer to the continuum result. This indicates that

there is less GIB effect for the N3LO interaction than for the

LO interaction. Further, this indicates that GIB effect stems

from the nonlocal smearing parameter partially cancel those

caused by the lattice artifacts since there are some nonlocally

smeared contact terms at NLO and N3LO.

B. S-wave neutron-proton scattering phase shifts

We first calculate the neutron-proton scattering phase shifts

for the S-wave channels, 1S0 and 3S1, using Lüscher’s formula.

In order to obtain results for a wide energy range, we use
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FIG. 4. S-wave neutron-proton scattering phase shifts calculated using the spherical wall method as a function of the relative momenta

between the two nucleons.

several cubic boxes with volumes V = (14a)3, (16a)3, and

(18a)3. To study the finite volume effects, larger cubic boxes

with volume of V = (24a)3, (26a)3, and (28a)3 are also used

for the same calculations. We first perform the calculation in

the rest frame, and then boost the proton-neutron system to

moving frames with momenta P = (2π/L)k. The results for
1S0 and 3S1 are shown in Figs. 2 and 3, respectively. The plots

in the top row are the LO results while those in the bottom row

are the N3LO results. The left two columns are the results

using the smaller boxes whereas the right two columns are

the results using the larger boxes. w/o means without GIR

corrections whereas w/ denotes the results after restoring the

Galilean invariance.

From the plots in the top row of Fig. 2, one can see that

there is clear GIB at LO although the calculation shows very

good dispersion relation. The GIB of 1S0 at LO appears at

low momenta, that is for relative momenta between 20 and

40 MeV. The Galilean invariance is restored after including

the GIR corrections. It is necessary to mention that the devia-

tion of the lattice results from those of the Nijmegen partial

wave analysis is just because these are the LO results. At

N3LO, it shows negligible GIB for 1S0, which is consistent

with what the dispersion relation indicates. The case for 3S1 is

different since the ground state of 3S1 is a bound state. Both

the LO and N3LO results show very small GIB. Combining

the results of 1S0 and 3S1, we find that the N3LO interaction

has less GIB than the LO interaction. This is because the GIB

from the nonlocally smeared contact interactions at NLO and

N3LO accidentally cancel some GIB effects caused by the

lattice artifacts due to the nonzero lattice spacing.

We also calculate the scattering phase shifts for 1S0 and 3S1

using the spherical wall method. The spherical wall method
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FIG. 5. Mixing angles, ǫ1(3S1 − 3D1) and ǫ2(3P2 − 3F2), as a function of relative momenta between the proton and neutron. The spherical

wall method is used.
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FIG. 6. P-wave neutron-proton scattering phase shifts as a function of relative momenta between the proton and neutron. The spherical

wall method is used.

works with a one-dimension radial Hamiltonian matrix in-

stead of a full three-dimension matrix. Thus the calculation is

much faster than using Lüscher’s formula. Meanwhile, in or-

der to reach the region where the NN interaction is vanishing

a much larger box should be used. In our calculation, we set

L = 40 corresponding to radial distance to be La/2 = 26.4 fm

for a = 1.32 fm. To obtain a clear signal of GIB, we boost the

proton-neutron system to moving frame with momentum P =
(2π/L)k with k = [3, 3, 3]T . The N3LO results are shown in

Fig. 4. The small difference of the phase shifts in the two

frames with k = [0, 0, 0]T and k = [3, 3, 3]T indicates the

Galilean invariance breaking of the interaction is small. Addi-

tionally, one also observes small difference of the phase shifts

for 3S1 calculated using the spherical wall method from those

calculated using the Lüscher’s formula. This is because there

is a systematic error arising from the unphysical coupling of

the l = 0 state with l = 4, 6, and even higher partial waves

using the generalized Lüscher’s formula in frames with P �= 0

[22,26,34].

C. Mixing angles, ǫ1 and ǫ2, and neutron-proton scattering

phase shifts for P and D waves

As the Lüscher formula works well for the S waves but

not as accurately for the P, D, and even higher partial waves,

we continue to calculate the mixing angles, ǫ1(3S1 − 3D1) and

ǫ2(3P2 − 3F2), and proton-neutron scattering phase shifts for P

and D waves using the spherical wall method. The results are

shown in Figs. 5, 6, and 7, respectively.

From the plots, the Galilean invariance breaking for ǫ1

starts around prel = 120 MeV while that for ǫ2 starts around

prel = 150 MeV. For ǫ1, after including the GIR correction

the Galilean invariance is restored for the whole range prel �

250 MeV. For ǫ2, the GIR correction reduces the GIB very

much although not completely.

The behavior of the phase shifts for all four P-wave chan-

nels is very similar. The GIB appears in the high-momenta

region, and starts around prel = 120 MeV. After including the

GIR correction, the GIB is largely removed. Very similarly,

GIB also appears in high-momentum region for the D waves.
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FIG. 7. D-wave neutron-proton scattering phase as a function of the relative momenta between the proton and neutron. The spherical wall

method is used.

It starts around prel = 100 MeV for 1D2 and 3D3, and around

prel = 150 MeV for 3D1 and 3D2. The GIR correction increases

the starting points of GIB to around prel = 200 MeV.

IV. CONCLUSIONS

With the rapid development of the high-performance com-

puters, nuclear lattice effective field theory has become a

powerful tool in ab initio calculations of few- and many-body

systems. However, getting efficient and precise nuclear forces

on the lattice is more difficult than in the continuum due to

the lattice artifacts caused by the nonzero lattice spacing. In

order to reduce the lattice artifacts, in Ref. [12] nonlocally

smeared contact operators were introduced. With only a few

parameters, the binding energy of nuclei with nucleons up

to 20 can be produced with good precision. However, the

Galilean invariance is broken due to the nonlocal smearing

parameter sNL used to construct the contact operators. Another

source of Galilean invariance breaking arises from the lattice

itself.

We investigate the effect of Galilean invariance breaking

and restore the Galilean invariance on the lattice by studying

the dispersion relation and proton-neutron scattering phase

shifts. We find that analyzing the phase shifts in different

frames is useful to detect GIB for the 1S0 partial wave while

the dispersion relation provides a more efficient tool in the 3S1

channel. This is because the 1S0 ground state is a continuum

state while the ground state of 3S1 is a bound state.

We find that the Galilean invariance breaking caused by the

nonlocal smearing parameter sNL partially cancels that caused

by the lattice artifacts due to the nonzero lattice spacing. Due

to this cancellation, the Galilean invariance breaking of the

NN interaction at N3LO is small. After including the GIR

correction the Galilean invariance is restored. One should

notice that similar calculations would have to be repeated if

altering any details such as the lattice spacing or other terms

in the Hamiltonian.

Our previous study shows that the nonlocally smeared

contact operators are promising in generating the binding of

nucleons in nuclei. The present study shows the Galilean

064001-9



NING LI et al. PHYSICAL REVIEW C 99, 064001 (2019)

invariance breaking is small, and the Galilean invariance can

be restored after including the Galilean invariance restoration

corrections. This interaction has been used in Monte Carlo

simulations for the nuclear binding of the light- and medium-

mass nuclei. We hope to be able to report the corresponding

results in the near future.
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APPENDIX: LATTICE OPERATOR DEFINITIONS

The pertinent lattice operators were already defined in

Ref. [13]. However, for completeness, we list them again here.

With the dressed annihilation operator a
sNL

i, j , we define the pair

annihilation operators [a(n)a(n′)]sNL

S,Sz,I,Iz
, where

[a(n)a(n′)]sNL

S,Sz,I,Iz
=

∑

i, j,i′, j′

a
sNL

i, j (n)Mii′ (S, Sz )M j j′ (I, Iz )asNL

i′, j′ (n
′)

(A1)

with

Mii′ (0, 0) =
1

√
2

[δi,0δi′,1 − δi,1δi′,0], (A2)

Mii′ (1, 1) = δi,0δi′,0, (A3)

Mii′ (1, 0) =
1

√
2

[δi,0δi′,1 + δi,1δi′,0], (A4)

Mii′ (1,−1) = δi,1δi′,1. (A5)

We define the lattice finite difference operation ∇l on a

general lattice function f (n) as

∇l f (n) = 1
2

f (n + l̂) − 1
2

f (n − l̂), (A6)

where l̂ is the spatial lattice unit vector in the l direction. It is

also convenient to define the lattice finite difference operation

∇1/2,l defined on points halfway between lattice sites,

∇1/2,l f (n) = f
(

n + 1
2
l̂
)

− f
(

n − 1
2
l̂
)

. (A7)

This operation is used solely to define the Laplace operator,

∇2
1/2 =

∑

l

∇2
1/2,l . (A8)

Further, we define the solid harmonics

RL,Lz
(r) =

√

4π

2L + 1
rLYL,Lz

(θ, φ), (A9)

and their complex conjugates

R∗
L,Lz

(r) =
√

4π

2L + 1
rLY ∗

L,Lz
(θ, φ). (A10)

Using the pair annihilation operators, lattice finite differences,

and the solid harmonics, we define the operator

P
2M,sNL

S,Sz,L,Lz,I,Iz
(n) =

[

a(n)∇2M
1/2R∗

L,Lz
(∇)a(n)

]sNL

S,Sz,I,Iz
, (A11)

where ∇2M
1/2 and ∇ act on the second annihilation operator.

More explicitly stated, this means that we act on the n′ in

Eq. (A1) and then set n′ to equal n. The even integer 2M

gives us higher powers of the finite differences. Writing the

Clebsch-Gordan coefficients as 〈SSzLLz|JJz〉, we define

O
2M,sNL

S,L,J,Jz,I,Iz
(n) =

∑

Sz,Lz

〈SSzLLz|JJz〉P2M,sNL

S,Sz,L,Lz,I,Iz
(n). (A12)
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