000873102 001__ 873102
000873102 005__ 20240610121016.0
000873102 0247_ $$2doi$$a10.1016/j.physletb.2019.134863
000873102 0247_ $$2ISSN$$a0370-2693
000873102 0247_ $$2ISSN$$a1873-2445
000873102 0247_ $$2Handle$$a2128/24210
000873102 0247_ $$2altmetric$$aaltmetric:53304304
000873102 0247_ $$2WOS$$aWOS:000488071200093
000873102 037__ $$aFZJ-2020-00550
000873102 082__ $$a530
000873102 1001_ $$0P:(DE-Juel1)159199$$aLu, Bing-Nan$$b0
000873102 245__ $$aEssential elements for nuclear binding
000873102 260__ $$aAmsterdam$$bNorth-Holland Publ.$$c2019
000873102 3367_ $$2DRIVER$$aarticle
000873102 3367_ $$2DataCite$$aOutput Types/Journal article
000873102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582291816_17377
000873102 3367_ $$2BibTeX$$aARTICLE
000873102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873102 3367_ $$00$$2EndNote$$aJournal Article
000873102 520__ $$aHow does nuclear binding emerge from first principles? Our current best understanding of nuclear forces is based on a systematic low-energy expansion called chiral effective field theory. However, recent ab initio calculations of nuclear structure have found that not all chiral effective field theory interactions give accurate predictions with increasing nuclear density. In this letter we address the reason for this problem and the first steps toward a solution. Using nuclear lattice simulations, we deduce the minimal nuclear interaction that can reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii. We find that only four parameters are needed. With these four parameters one can accurately describe neutron matter up to saturation density and the ground state properties of nuclei up to calcium. Given the absence of sign oscillations in these lattice Monte Carlo simulations and the mild scaling of computational effort scaling with nucleon number, this work provides a pathway to high-quality simulations in the future with as many as one or two hundred nucleons.
000873102 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000873102 536__ $$0G:(DE-Juel1)jara0015_20130501$$aNuclear Lattice Simulations (jara0015_20130501)$$cjara0015_20130501$$fNuclear Lattice Simulations$$x1
000873102 588__ $$aDataset connected to CrossRef
000873102 7001_ $$0P:(DE-Juel1)159474$$aLi, Ning$$b1
000873102 7001_ $$00000-0002-7951-1991$$aElhatisari, Serdar$$b2
000873102 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b3$$eCorresponding author$$ufzj
000873102 7001_ $$0P:(DE-Juel1)131142$$aEpelbaum, Evgeny$$b4
000873102 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b5
000873102 773__ $$0PERI:(DE-600)1466612-1$$a10.1016/j.physletb.2019.134863$$gVol. 797, p. 134863 -$$p134863 -$$tPhysics letters / B B$$v797$$x0370-2693$$y2019
000873102 8564_ $$uhttps://juser.fz-juelich.de/record/873102/files/1-s2.0-S0370269319305775-main.pdf$$yOpenAccess
000873102 8564_ $$uhttps://juser.fz-juelich.de/record/873102/files/1812.10928.pdf$$yOpenAccess
000873102 8564_ $$uhttps://juser.fz-juelich.de/record/873102/files/1-s2.0-S0370269319305775-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873102 8564_ $$uhttps://juser.fz-juelich.de/record/873102/files/1812.10928.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873102 909CO $$ooai:juser.fz-juelich.de:873102$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich$$b3$$kFZJ
000873102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131142$$aForschungszentrum Jülich$$b4$$kFZJ
000873102 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b5$$kFZJ
000873102 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000873102 9141_ $$y2019
000873102 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873102 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873102 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873102 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS LETT B : 2017
000873102 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873102 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873102 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873102 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873102 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873102 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873102 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873102 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873102 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873102 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873102 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873102 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873102 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000873102 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000873102 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000873102 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000873102 9801_ $$aFullTexts
000873102 980__ $$ajournal
000873102 980__ $$aVDB
000873102 980__ $$aI:(DE-Juel1)IAS-4-20090406
000873102 980__ $$aI:(DE-Juel1)IKP-3-20111104
000873102 980__ $$aI:(DE-82)080012_20140620
000873102 980__ $$aUNRESTRICTED
000873102 981__ $$aI:(DE-Juel1)IAS-4-20090406