001     873102
005     20240610121016.0
024 7 _ |a 10.1016/j.physletb.2019.134863
|2 doi
024 7 _ |a 0370-2693
|2 ISSN
024 7 _ |a 1873-2445
|2 ISSN
024 7 _ |a 2128/24210
|2 Handle
024 7 _ |a altmetric:53304304
|2 altmetric
024 7 _ |a WOS:000488071200093
|2 WOS
037 _ _ |a FZJ-2020-00550
082 _ _ |a 530
100 1 _ |a Lu, Bing-Nan
|0 P:(DE-Juel1)159199
|b 0
245 _ _ |a Essential elements for nuclear binding
260 _ _ |a Amsterdam
|c 2019
|b North-Holland Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582291816_17377
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a How does nuclear binding emerge from first principles? Our current best understanding of nuclear forces is based on a systematic low-energy expansion called chiral effective field theory. However, recent ab initio calculations of nuclear structure have found that not all chiral effective field theory interactions give accurate predictions with increasing nuclear density. In this letter we address the reason for this problem and the first steps toward a solution. Using nuclear lattice simulations, we deduce the minimal nuclear interaction that can reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii. We find that only four parameters are needed. With these four parameters one can accurately describe neutron matter up to saturation density and the ground state properties of nuclei up to calcium. Given the absence of sign oscillations in these lattice Monte Carlo simulations and the mild scaling of computational effort scaling with nucleon number, this work provides a pathway to high-quality simulations in the future with as many as one or two hundred nucleons.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Nuclear Lattice Simulations (jara0015_20130501)
|0 G:(DE-Juel1)jara0015_20130501
|c jara0015_20130501
|f Nuclear Lattice Simulations
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)159474
|b 1
700 1 _ |a Elhatisari, Serdar
|0 0000-0002-7951-1991
|b 2
700 1 _ |a Lee, Dean
|0 P:(DE-Juel1)156278
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Epelbaum, Evgeny
|0 P:(DE-Juel1)131142
|b 4
700 1 _ |a Meißner, Ulf-G.
|0 P:(DE-Juel1)131252
|b 5
773 _ _ |a 10.1016/j.physletb.2019.134863
|g Vol. 797, p. 134863 -
|0 PERI:(DE-600)1466612-1
|p 134863 -
|t Physics letters / B B
|v 797
|y 2019
|x 0370-2693
856 4 _ |u https://juser.fz-juelich.de/record/873102/files/1-s2.0-S0370269319305775-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873102/files/1812.10928.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873102/files/1-s2.0-S0370269319305775-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/873102/files/1812.10928.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:873102
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131142
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131252
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS LETT B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21