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How does nuclear binding emerge from first principles? Our current best understanding of nuclear forces 
is based on a systematic low-energy expansion called chiral effective field theory. However, recent ab 
initio calculations of nuclear structure have found that not all chiral effective field theory interactions 
give accurate predictions with increasing nuclear density. In this letter we address the reason for this 
problem and the first steps toward a solution. Using nuclear lattice simulations, we deduce the minimal 
nuclear interaction that can reproduce the ground state properties of light nuclei, medium-mass nuclei, 
and neutron matter simultaneously with no more than a few percent error in the energies and charge 
radii. We find that only four parameters are needed. With these four parameters one can accurately 
describe neutron matter up to saturation density and the ground state properties of nuclei up to calcium. 
Given the absence of sign oscillations in these lattice Monte Carlo simulations and the mild scaling 
of computational effort scaling with nucleon number, this work provides a pathway to high-quality 
simulations in the future with as many as one or two hundred nucleons.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Chiral effective field theory (χEFT) is a first principles ap-
proach to nuclear forces where interactions are arranged as a low-
energy expansion in powers of momentum and pion mass [1,2]. 
While many calculations establish the reliability of χEFT in de-
scribing the properties of light nuclei [3–7], the binding energies 
and charge radii of medium mass nuclei are not consistently re-
produced [5,8–14]. One well-known example is that the charge 
radius of 16O tends to be too small for most of interactions in the 
literature [8,10–13]. The core issue is that χEFT many-body calcu-
lations do not yet give reliable and accurate predictions at higher 
nuclear densities. We note that there have been efforts to improve 
the convergence of many-body calculations by rearranging the chi-
ral effective field theory expansion at nonzero density [15,16]. If 
one reaches high enough orders in the χEFT expansion, then the 
systematic errors will eventually decrease as more and more low-
energy parameters are tuned to empirical data. However, the pre-
dictive power of the ab initio approach will be diminished as more 
data will be needed to constrain the higher-body forces. Further-
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more, the computational effort will increase significantly to the 
point where a first principles treatment may not be practical.

One pragmatic approach is to further constrain the nuclear 
force using nuclear structure data from medium mass nuclei or 
the saturation properties of nuclear matter [14]. This approach has 
been applied successfully in several recent calculations [17–20]. 
A rather different line of investigation has looked at the micro-
scopic origins of the problem. In Ref. [21] numerical evidence is 
shown that nuclear matter sits near a quantum phase transition 
between a Bose gas of alpha particles and nuclear liquid. It is 
argued that local SU(4)-invariant forces play an increasingly im-
portant role at higher nuclear densities. The term local refers to 
velocity-independent interactions, as opposed to nonlocal interac-
tions which are velocity dependent. The SU(4) refers to Wigner’s 
approximate symmetry of the nuclear interactions where the four 
nucleonic degrees of freedom (proton spin-up, proton spin-down, 
neutron spin-up, neutron spin-down) can be rotated into each 
other [22].

The importance of SU(4)-invariant interactions can be under-
stood in terms of coherent enhancement. Spin-dependent forces 
tend to cancel when summing over all possible nucleonic spin 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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configurations. For example, we have seen in lattice calculations 
of binding energies for closed shell systems that the contribution 
from the repulsive P-wave channels often cancels most of the con-
tribution from the attractive P-wave channels. We note also the 
intriguing analysis in Ref. [23] which demonstrates the connec-
tion between quantum chromodynamics with a large number of 
colors to Wigner’s SU(4) symmetry for the S-wave interactions 
and Serber symmetry for the P-wave interactions. Similarly most 
isospin-dependent forces tend to cancel in symmetric nuclear mat-
ter due to the equal number of protons and neutrons, the one 
notable exception being the Coulomb interaction. The idea of SU(4) 
universality at large S-wave scattering length has a rich history 
in nuclear physics. It is well known that the Tjon line relating 
3H and 4He binding energies is a manifestation of universality 
in nuclear systems [24,25]. It has also been shown that 3H and 
4He are characterized by universal physics associated with the Efi-
mov effect [26,27]. The coherent enhancement of SU(4)-invariant 
forces in the nuclear many-body environment suggests a possi-
ble resurgence of SU(4) symmetry in heavier nuclei as well. This 
idea inspired the exploratory work in Ref. [28] on the structure 
of nuclei up through oxygen using an SU(4)-invariant interaction. 
This built upon previous work in Ref. [21] which showed that local 
SU(4)-invariant interactions have a particularly strong effect on nu-
clear binding. The special role of local forces has also been studied 
by looking at the effective interactions between two bound dimers 
in a one-dimensional model [29].

In this work we attempt to tie all of the loose threads together. 
We start by acknowledging that not every χEFT interaction will 
give well controlled and reliable results for heavier systems. Addi-
tional ingredients are needed to make sure that the convergence 
of higher-order terms is under control. In order to see what the 
essential elements might be, we take a constructive reductionist 
approach and deduce the minimal nuclear interaction that can re-
produce the ground state properties of light nuclei, medium-mass 
nuclei, and neutron matter simultaneously with no more than a 
few percent error in the energies and charge radii.

We start with a simple SU(4)-invariant leading order effective 
field theory without explicit pions (pion-less EFT) on a periodic L3

cube with lattice coordinates n = (nx,ny, nz). The Hamiltonian is

HSU(4) = Hfree + 1

2!C2

∑

n

ρ̃(n)2 + 1

3!C3

∑

n

ρ̃(n)3, (1)

where Hfree is the free nucleon Hamiltonian with nucleon mass 
m = 938.9 MeV. The density operator ρ̃(n) is defined in the same 
manner as in Ref. [28],

ρ̃(n) =
∑

i

ã†
i (n)ãi(n) + sL

∑

|n′−n|=1

∑

i

ã†
i (n

′)ãi(n
′), (2)

where i is the joint spin-isospin index and the smeared annihila-
tion and creation operators are defined as

ãi(n) = ai(n) + sN L

∑

|n′−n|=1

ai(n
′). (3)

The summation over the spin and isospin implies that the interac-
tion is SU(4) invariant. The parameter sL controls the range of the 
local part of the interaction, while sN L controls the range of the 
nonlocal part of the interaction. The parameters C2 and C3 give 
the strength of the two-body and three-body interactions, respec-
tively.

In this letter we use a lattice spacing a = 1.32 fm, which cor-
responds to a momentum cutoff � = π/a ≈ 465 MeV. The dy-
namics with momentum Q much smaller than � can be well 
described and residual lattice artifacts are suppressed by powers of 
Q /� [30]. In Ref. [31] we showed that the nucleon-nucleon scat-
tering phase shift can be precisely extracted on the lattice using 
the spherical wall method. In this work we fix the two-body inter-
action by fitting the scattering length a0 and effective range r0. In 
each instance we calculate the S-wave phase shifts below relative 
momentum P rel ≤ 50 MeV using the spherical wall method and 
calculate fit errors by comparing results with the effective range 
expansion.

For systems with more than three nucleons, we use auxiliary-
field Monte Carlo lattice simulations for a cubic periodic box with 
length L [32,33]. For nuclei with A < 30 nucleons, we take L ≥ 8, 
with larger values of L for cases where more accuracy is desired. 
For nuclei with A ≥ 30 we take L = 9. The temporal lattice spac-
ing is 0.001 MeV−1 and the projection time is set to 0.3 MeV−1. 
We find that these settings are enough to provide accurate results 
for systems with A ≤ 48. We also use the recently-developed pin-
hole algorithm [28] in order to calculate density distributions and 
charge radii.

We use few-body data with A ≤ 3 to fix the interaction coeffi-
cients C2 and C3, while the range of the interactions are controlled 
by the parameters sN L and sL . The particular combination of sN L

and sL we choose is set through a procedure we now describe. 
In the few-body sector, the two smearing parameters sN L and sL

produce very similar effects and are difficult to distinguish from 
few-body data alone [21]. Therefore the chosen values for sN L and 
sL are fixed later after calculating heavier nuclei. The two-body 
interaction strength C2 and interaction range are determined by 
fitting the scattering length a0 and effective range r0 averaged over 
the two S-wave channels, 1 S0 and 3 S1. We adjust a0 to mini-
mize the corrections to the 3H and 4He binding energies that arise 
from the differences between the two S-wave channels. This pro-
cess gives an optimal value of a0 = 9.1 fm, and we use this value 
for a0 in what follows. We note that our SU(4)-invariant deuteron 
is degenerate with the di-neutron ground state and has less than 
half of the physical deuteron binding energy. However this issue is 
easily fixed when SU(4)-breaking interactions are included. For the 
SU(4)-averaged effective range we use r0 = (r0(

1 S0) + r0(
3 S1))/2 ≈

2.2 fm.
We determine the three-body coupling strength C3 by fitting to 

the 3H binding energy. At the physical point B(3H) = 8.48 MeV, 
the 4He binding energy with the Coulomb interaction included 
is 28.9 MeV. This is close to the experimental value B(4He) =
28.3 MeV. We carry out this fitting process for several different 
pairs of values for sN L and sL , and for each pair we calculate a 
handful of nuclear ground states using auxiliary-field lattice Monte 
Carlo simulations. As described in the Supporting Online Materials 
section, we find that the pair sN L = 0.5 and sL = 0.061 gives the 
best overall description. The full set of optimized parameters are 
C2 = −3.41 × 10−7 MeV−2, C3 = −1.4 × 10−14 MeV−5, sN L = 0.5, 
and sL = 0.061.

In Table 1 we show the binding energies and charge radii for 
selected nuclei. For comparison we also list the experimental val-
ues and the calculated Coulomb energy. While the 3H energy is 
exact due to the fitting procedure, all the other values are predic-
tions. The largest relative error in binding energy is 4% and occurs 
for 16O. The largest relative error in the charge radius is 8% and 
occurs for 3H. For the calculations of nuclear charge radii, we have 
taken into account the charge radius of the proton.

We now calculate the binding energies for 86 bound even-even 
nuclei (even number of protons, even number of neutrons) with 
up to A = 48 nucleons. The results are shown and compared with 
empirical data in Fig. 1. Because the interaction has an exact SU(4) 
symmetry, we are free of the sign problem and can calculate the 
binding energies with high precision. In Fig. 1 all of the Monte 
Carlo error bars are smaller than the size of the symbols. The re-
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Table 1
Comparison of calculations and experiments for selected nuclei. The calculated binding energies 
and charge radii of 3H, 3He and selected alpha-like nuclei compared with experimental values. The 
Coulomb interaction is taken into account perturbatively. The first and second parentheses denote the 
Monte Carlo error and time extrapolation error, respectively. All energies are in MeV and all radii in 
fm. Experimental binding energies are taken from Ref. [34] and radii from Ref. [35].

B Exp. Coulomb B/Exp. Rch Exp. Rch/Exp.
3H 8.48(2)(0) 8.48 0.0 1.00 1.90(1)(1) 1.76 1.08
3He 7.75(2)(0) 7.72 0.73(1)(0) 1.00 1.99(1)(1) 1.97 1.01
4He 28.89(1)(1) 28.3 0.80(1)(1) 1.02 1.72(1)(3) 1.68 1.02
16O 121.9(1)(3) 127.6 13.9(1)(2) 0.96 2.74(1)(1) 2.70 1.01
20Ne 161.6(1)(1) 160.6 20.2(1)(1) 1.01 2.95(1)(1) 3.01 0.98
24Mg 193.5(02)(17) 198.3 28.0(1)(2) 0.98 3.13(1)(2) 3.06 1.02
28Si 235.8(04)(17) 236.5 37.1(2)(3) 1.00 3.26(1)(1) 3.12 1.04
40Ca 346.8(6)(5) 342.1 71.7(4)(4) 1.01 3.42(1)(3) 3.48 0.98
Fig. 1. Nuclear binding energies. The calculated binding energies from 3H to 48Ca. 
The solid symbols denote the lattice results and the open symbols denote the exper-
imental values. Different symbols and colors denote different element. The Coulomb 
interaction is taken into account perturbatively. The experimental values are taken 
from Ref. [34].

maining errors due to imaginary time and volume extrapolations 
are also small, less than 1% relative error, and thus are also not 
explicitly shown. In Fig. 1 we see that the general trends for the 
binding energies along each isotopic chain are well reproduced. In 
particular, the isotopic curves on the proton-rich side are close to 
the experimental results. The discrepancy is somewhat larger on 
the neutron-rich side and is a sign of missing effects such as spin-
dependent interactions.

The charge density profile is another important probe of nuclear 
structure. In Fig. 2 we show the charge densities of 16O and 40Ca 
calculated with the pinhole algorithm. We have again taken into 
account the charge distribution of the proton. To compare with 
data from the electron scattering experiments we also show results 
with the Coulomb interaction included via first order perturbation 
theory. The Coulomb force suppresses the central densities, draw-
ing the results closer to the empirical data. Our results are quite 
accurate for such a simple nuclear interaction.

We also examine the predictions for pure neutron matter (NM). 
In Fig. 3 we show the calculated NM energy as a function of the 
neutron density and the comparison with other calculations using 
next-to-next-to-next-to-leading-order (N3LO) chiral interactions. In 
the lattice results we vary the number of neutrons from 14 to 
66. The data for three different box sizes L=5 (upright triangles), 
L=6 (squares), L=7 (rightward-pointing triangles) are marked as 
filled red polygons. We see that our results are in general agree-
ment with the other calculations at densities above 0.05 fm−3, 
though calculations at higher orders are needed and are planned 
in future work to estimate uncertainties. At lower densities the 
discrepancy is larger as a result of our SU(4)-invariant interac-
Fig. 2. Charge density distributions. The calculated 16O and 40Ca charge densi-
ties compared with the empirical results. The circles denote the results without 
Coulomb interaction. The squares denote the results with the Coulomb interaction 
included perturbatively. Empirical values are taken from Ref. [36].

tion having the incorrect neutron-neutron scattering length. The 
open red polygons, again L=5 (upright triangles), L=6 (squares), 
L=7 (rightward-pointing triangles), show an improved calculation 
with a short-range interaction to reproduce the physical neutron-
neutron scattering length as well as a correction to improve invari-
ance under Galilean boosts. The restoration of Galilean invariance 
on the lattice is described in Ref. [40]. Overall, the results are quite 
good in view of the simplicity of the four-parameter interaction.

In this letter we have shown that the ground state properties 
of light nuclei, medium-mass nuclei, and neutron matter can be 
described using a minimal nuclear interaction with only four in-
teraction parameters. While the first three parameters are already 
standard in χEFT, the fourth and last parameter is a new feature 
that controls the strength of the local part of the nuclear inter-
actions. These insights can help design χEFT interactions with 
better convergence at higher densities. We encourage others to 
test simplified interactions in continuum nuclear structure calcula-
tions, interactions with SU(4) symmetry and a combination of local 
and nonlocal smearing. The details of our interaction are given in 
the Supplemental Material. In the continuum calculations, how-
ever, one can construct interactions with exact Galilean invariance, 
something that needs to be corrected order by order on the lattice 
[40].
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Fig. 3. Pure neutron matter. The pure neutron matter (NM) energy as a function of 
neutron density calculated using the NL50 interaction with box size L=5 (upright 
triangles), L=6 (squares), L=7 (rightward-pointing triangles), respectively. The filled 
red polygons show results for the leading-order SU(4)-symmetric interaction. The 
open red polygons show an improved calculation with a short-range interaction to 
reproduce the physical neutron-neutron scattering length as well as a correction 
to improve invariance under Galilean boosts. For comparison we also show results 
calculated with full N3LO chiral interactions (EM 500 MeV, EGM 450/500 MeV and 
EGM 450/700 MeV) [37], the results from variational (APR) [38] and Auxiliary Field 
Diffusion MC calculations (GCR) [39].

We are now using SU(4)-symmetric short-range interactions 
with local and nonlocal smearing and also one-pion exchange as 
the starting point for improved calculations of light and medium-
mass nuclei with chiral forces up to N3LO. While our ongoing N3LO 
work is far from finished, we do know that the corrections at NLO 
are typically at the 10% level in the binding energies. We should 
clarify that what we called LO in lattice chiral effective field theory 
is actually an improved LO calculation where the S-wave effective 
range correction is included. If the S-wave effective range correc-
tion were not included at LO, then the NLO correction would be 
at the 30% level. This 10% correction at NLO might still seem too 
large since the agreement between the LO results in this work and 
the experimental binding energies are better than 10%. However, 
this better-than-expected agreement can be explained by the addi-
tional fine-tuning we gain by adjusting the balance between local 
and nonlocal interactions to achieve accurate liquid drop proper-
ties.

The main takeaway message of the work presented here is that 
while some fine tuning of the chiral forces seems necessary to im-
prove convergence at higher densities, the number of independent 
fine tunings does not appear to be large. While we have not solved 
the convergence problem, we characterized the scope of problem. 
The key remaining question is how to accomplish these fine tun-
ings without fitting to the many-body data that we wish to predict. 
We plan to address this question in a forthcoming publication.

Aside from the Coulomb interaction, all of the other interactions 
in our minimal model respect Wigner’s SU(4) symmetry. This is 
an example of emergent symmetry. The SU(4)-invariant interaction 
resurges at higher densities not because the underlying fundamen-
tal interaction is exactly invariant, but because the SU(4)-invariant 
interaction is coherently enhanced in the many-body environment. 
This is not to minimize the important role of spin-dependent ef-
fects such as spin-orbit couplings and tensor forces. However, it 
does seem to suggest that SU(4) invariance plays a key role in the 
bulk properties of nuclear matter.

The computational effort needed for the auxiliary-field lattice 
Monte Carlo simulations scales with the number of nucleons, A, as 
somewhere between A1 to A2 for medium mass nuclei. The actual 
exponent depends on the architecture of the computing platform. 
The SU(4)-invariant interaction provides an enormous computa-
tional advantage by removing sign oscillations from the lattice 
Monte Carlo simulations for any even-even nucleus. Coulomb in-
teractions and all other corrections can be implemented using 
perturbation theory or the recently-developed eigenvector contin-
uation method if the corrections are too large for perturbation 
theory [41]. Given the mild scaling with nucleon number and sup-
pression of sign oscillations, the methods presented here provide 
a new route to realistic lattice simulations of heavy nuclei in the 
future with as many as one or two hundred nucleons. By realis-
tic calculations we mean calculations where one can demonstrate 
order-by-order convergence in the chiral expansion going from LO 
to NLO, NLO to N2LO, and N2LO to N3LO, while maintaining agree-
ment with empirical data.
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