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How does nuclear binding emerge from first principles? Our current best understanding of nuclear forces
is based on a systematic low-energy expansion called chiral effective field theory. However, recent ab initio
calculations of nuclear structure have found that not all chiral effective field theory interactions give accurate
predictions with increasing nuclear density. In this letter we address the reason for this problem and the first
steps toward a solution. Using nuclear lattice simulations, we deduce the minimal nuclear interaction that can
reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously
with no more than a few percent error in the energies and charge radii. We find that only four parameters are
needed. With these four parameters one can accurately describe neutron matter up to saturation density and the
ground state properties of nuclei up to calcium. Given the absence of sign oscillations in these lattice Monte
Carlo simulations and the mild scaling of computational effort scaling with nucleon number, this work provides
a pathway to high-quality simulations in the future with as many as one or two hundred nucleons.

Chiral effective field theory (χEFT) is a first principles approach to nuclear forces where interactions are arranged as a low-
energy expansion in powers of momentum and pion mass [1, 2]. While many calculations establish the reliability of χEFT in
describing the properties of light nuclei [3–7], the binding energies and charge radii of medium mass nuclei are not consistently
reproduced [5, 8–14]. One well-known example is that the charge radius of 16O tends to be too small for most of interactions in
the literature [8, 10–13]. The core issue is that χEFT many-body calculations do not yet give reliable and accurate predictions
at higher nuclear densities. We note that there have been efforts to improve the convergence of many-body calculations by
rearranging the chiral effective field theory expansion at nonzero density [15, 16]. If one reaches high enough orders in the
χEFT expansion, then the systematic errors will eventually decrease as more and more low-energy parameters are tuned to
empirical data. However, the predictive power of the ab initio approach will be diminished as more data will be needed to
constrain the higher-body forces. Furthermore, the computational effort will increase significantly to the point where a first
principles treatment may not be practical.

One pragmatic approach is to further constrain the nuclear force using nuclear structure data from medium mass nuclei or the
saturation properties of nuclear matter [14]. This approach has been applied successfully in several recent calculations [17–20].
A rather different line of investigation has looked at the microscopic origins of the problem. In Ref. [21] numerical evidence
is shown that nuclear matter sits near a quantum phase transition between a Bose gas of alpha particles and nuclear liquid.
It is argued that local SU(4)-invariant forces play an increasingly important role at higher nuclear densities. The term local
refers to velocity-independent interactions, as opposed to nonlocal interactions which are velocity dependent. The SU(4) refers
to Wigner’s approximate symmetry of the nuclear interactions where the four nucleonic degrees of freedom (proton spin-up,
proton spin-down, neutron spin-up, neutron spin-down) can be rotated into each other [22].

The importance of SU(4)-invariant interactions can be understood in terms of coherent enhancement. Spin-dependent forces
tend to cancel when summing over all possible nucleonic spin configurations. For example, we have seen in lattice calculations
of binding energies for closed shell systems that the contribution from the repulsive P-wave channels often cancels most of
the contribution from the attractive P-wave channels. We note also the intriguing analysis in Ref. [23] which demonstrates the
connection between quantum chromodynamics with a large number of colors to Wigner’s SU(4) symmetry for the S-wave inter-
actions and Serber symmetry for the P-wave interactions. Similarly most isospin-dependent forces tend to cancel in symmetric
nuclear matter due to the equal number of protons and neutrons, the one notable exception being the Coulomb interaction. The
idea of SU(4) universality at large S-wave scattering length has a rich history in nuclear physics. It is well known that the Tjon
line relating 3H and 4He binding energies is a manifestation of universality in nuclear systems [24, 25]. It has also been shown
that 3H and 4He are characterized by universal physics associated with the Efimov effect [26, 27]. The coherent enhancement
of SU(4)-invariant forces in the nuclear many-body environment suggests a possible resurgence of SU(4) symmetry in heavier
nuclei as well. This idea inspired the exploratory work in Ref. [28] on the structure of nuclei up through oxygen using an SU(4)-
invariant interaction. This built upon previous work in Ref. [21] which showed that local SU(4)-invariant interactions have a
particularly strong effect on nuclear binding. The special role of local forces has also been studied by looking at the effective
interactions between two bound dimers in a one-dimensional model [29].
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In this work we attempt to tie all of the loose threads together. We start by acknowledging that not every χEFT interaction will
give well controlled and reliable results for heavier systems. Additional ingredients are needed to make sure that the convergence
of higher-order terms is under control. In order to see what the essential elements might be, we take a constructive reductionist
approach and deduce the minimal nuclear interaction that can reproduce the ground state properties of light nuclei, medium-mass
nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii.

We start with a simple SU(4)-invariant leading order effective field theory without explicit pions (pion-less EFT) on a periodic
L3 cube with lattice coordinates n = (nx,ny, nz). The Hamiltonian is

HSU(4) = Hfree +
1

2!
C2

∑
n

ρ̃(n)2 +
1

3!
C3

∑
n

ρ̃(n)3, (1)

where Hfree is the free nucleon Hamiltonian with nucleon mass m = 938.9 MeV. The density operator ρ̃(n) is defined in the
same manner as in Ref. [28],

ρ̃(n) =
∑
i

ã†i (n)ãi(n) + sL
∑

|n′−n|=1

∑
i

ã†i (n
′)ãi(n

′), (2)

where i is the joint spin-isospin index and the smeared annihilation and creation operators are defined as

ãi(n) = ai(n) + sNL
∑

|n′−n|=1

ai(n
′). (3)

The summation over the spin and isospin implies that the interaction is SU(4) invariant. The parameter sL controls the range of
the local part of the interaction, while sNL controls the range of the nonlocal part of the interaction. The parameters C2 and C3

give the strength of the two-body and three-body interactions, respectively.
In this letter we use a lattice spacing a = 1.32 fm, which corresponds to a momentum cutoff Λ = π/a ≈ 465 MeV. The

dynamics with momentum Q much smaller than Λ can be well described and residual lattice artifacts are suppressed by powers
of Q/Λ [30]. In Ref. [31] we showed that the nucleon-nucleon scattering phase shift can be precisely extracted on the lattice
using the spherical wall method. In this work we fix the two-body interaction by fitting the scattering length a0 and effective
range r0. In each instance we calculate the S-wave phase shifts below relative momentum Prel ≤ 50 MeV using the spherical
wall method and calculate fit errors by comparing results with the effective range expansion.

For systems with more than three nucleons, we use auxiliary-field Monte Carlo lattice simulations for a cubic periodic box
with length L [32, 33]. For nuclei with A < 30 nucleons, we take L ≥ 8, with larger values of L for cases where more accuracy
is desired. For nuclei with A ≥ 30 we take L = 9. The temporal lattice spacing is 0.001 MeV−1 and the projection time is
set to 0.3 MeV−1. We find that these settings are enough to provide accurate results for systems with A ≤ 48. We also use the
recently-developed pinhole algorithm [28] in order to calculate density distributions and charge radii.

We use few-body data with A ≤ 3 to fix the interaction coefficients C2 and C3, while the range of the interactions are
controlled by the parameters sNL and sL. The particular combination of sNL and sL we choose is set through a procedure we
now describe. In the few-body sector, the two smearing parameters sNL and sL produce very similar effects and are difficult
to distinguish from few-body data alone [21]. Therefore the chosen values for sNL and sL are fixed later after calculating
heavier nuclei. The two-body interaction strength C2 and interaction range are determined by fitting the scattering length a0 and
effective range r0 averaged over the two S-wave channels, 1S0 and 3S1. We adjust a0 to minimize the corrections to the 3H and
4He binding energies that arise from the differences between the two S-wave channels. This process gives an optimal value of
a0 = 9.1 fm, and we use this value for a0 in what follows. We note that our SU(4)-invariant deuteron is degenerate with the
di-neutron ground state and has less than half of the physical deuteron binding energy. However this issue is easily fixed when
SU(4)-breaking interactions are included. For the SU(4)-averaged effective range we use r0 = (r0(1S0)+r0(3S1))/2 ≈ 2.2 fm.

We determine the three-body coupling strength C3 by fitting to the 3H binding energy. At the physical point B(3H) =
8.48 MeV, the 4He binding energy with the Coulomb interaction included is 28.9 MeV. This is close to the experimental value
B(4He) = 28.3 MeV. We carry out this fitting process for several different pairs of values for sNL and sL, and for each pair we
calculate a handful of nuclear ground states using auxiliary-field lattice Monte Carlo simulations. As described in the Supporting
Online Materials section, we find that the pair sNL = 0.5 and sL = 0.061 gives the best overall description. The full set of
optimized parameters are C2 = −3.41× 10−7 MeV−2, C3 = −1.4× 10−14 MeV−5, sNL = 0.5, and sL = 0.061.

In Table I we show the binding energies and charge radii for selected nuclei. For comparison we also list the experimental
values and the calculated Coulomb energy. While the 3H energy is exact due to the fitting procedure, all the other values are
predictions. The largest relative error in binding energy is 4% and occurs for 16O. The largest relative error in the charge radius
is 8% and occurs for 3H. For the calculations of nuclear charge radii, we have taken into account the charge radius of the proton.

We now calculate the binding energies for 86 bound even-even nuclei (even number of protons, even number of neutrons)
with up to A = 48 nucleons. The results are shown and compared with empirical data in Fig. 1. Because the interaction has an
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B Exp. Coulomb B/Exp. Rch Exp. Rch/Exp.
3H 8.48(2)(0) 8.48 0.0 1.00 1.90(1)(1) 1.76 1.08
3He 7.75(2)(0) 7.72 0.73(1)(0) 1.00 1.99(1)(1) 1.97 1.01
4He 28.89(1)(1) 28.3 0.80(1)(1) 1.02 1.72(1)(3) 1.68 1.02
16O 121.9(1)(3) 127.6 13.9(1)(2) 0.96 2.74(1)(1) 2.70 1.01
20Ne 161.6(1)(1) 160.6 20.2(1)(1) 1.01 2.95(1)(1) 3.01 0.98
24Mg 193.5(02)(17) 198.3 28.0(1)(2) 0.98 3.13(1)(2) 3.06 1.02
28Si 235.8(04)(17) 236.5 37.1(2)(3) 1.00 3.26(1)(1) 3.12 1.04
40Ca 346.8(6)(5) 342.1 71.7(4)(4) 1.01 3.42(1)(3) 3.48 0.98

TABLE I: Comparison of calculations and experiments for selected nuclei. The calculated binding energies and charge radii of 3H, 3He
and selected alpha-like nuclei compared with experimental values. The Coulomb interaction is taken into account perturbatively. The first
and second parentheses denote the Monte Carlo error and time extrapolation error, respectively. All energies are in MeV and all radii in fm.
Experimental binding energies are taken from Ref. [34] and radii from Ref. [35].

exact SU(4) symmetry, we are free of the sign problem and can calculate the binding energies with high precision. In Fig. 1 all
of the Monte Carlo error bars are smaller than the size of the symbols. The remaining errors due to imaginary time and volume
extrapolations are also small, less than 1% relative error, and thus are also not explicitly shown. In Fig. 1 we see that the general
trends for the binding energies along each isotopic chain are well reproduced. In particular, the isotopic curves on the proton-rich
side are close to the experimental results. The discrepancy is somewhat larger on the neutron-rich side and is a sign of missing
effects such as spin-dependent interactions.

The charge density profile is another important probe of nuclear structure. In Fig. 2 we show the charge densities of 16O and
40Ca calculated with the pinhole algorithm. We have again taken into account the charge distribution of the proton. To compare
with data from the electron scattering experiments we also show results with the Coulomb interaction included via first order
perturbation theory. The Coulomb force suppresses the central densities, drawing the results closer to the empirical data. Our
results are quite accurate for such a simple nuclear interaction.

We also examine the predictions for pure neutron matter (NM). In Fig. 3 we show the calculated NM energy as a function
of the neutron density and the comparison with other calculations using next-to-next-to-next-to-leading-order (N3LO) chiral
interactions. In the lattice results we vary the number of neutrons from 14 to 66. The data for three different box sizes L=5
(upright triangles), L=6 (squares), L=7 (rightward-pointing triangles) are marked as filled red polygons. We see that our results
are in general agreement with the other calculations at densities above 0.05 fm−3, though calculations at higher orders are
needed and are planned in future work to estimate uncertainties. At lower densities the discrepancy is larger as a result of our
SU(4)-invariant interaction having the incorrect neutron-neutron scattering length. The open red polygons, again L=5 (upright
triangles), L=6 (squares), L=7 (rightward-pointing triangles), show an improved calculation with a short-range interaction to
reproduce the physical neutron-neutron scattering length as well as a correction to improve invariance under Galilean boosts.
The restoration of Galilean invariance on the lattice is described in Ref. [40]. Overall, the results are quite good in view of the
simplicity of the four-parameter interaction.

In this letter we have shown that the ground state properties of light nuclei, medium-mass nuclei, and neutron matter can be
described using a minimal nuclear interaction with only four interaction parameters. While the first three parameters are already
standard in χEFT, the fourth and last parameter is a new feature that controls the strength of the local part of the nuclear interac-
tions. These insights can help design χEFT interactions with better convergence at higher densities. We encourage others to test
simplified interactions in continuum nuclear structure calculations, interactions with SU(4) symmetry and a combination of local
and nonlocal smearing. The details of our interaction are given in the Supplemental Material. In the continuum calculations,
however, one can construct interactions with exact Galilean invariance, something that needs to be corrected order by order on
the lattice [40].

We are now using SU(4)-symmetric short-range interactions with local and nonlocal smearing and also one-pion exchange as
the starting point for improved calculations of light and medium-mass nuclei with chiral forces up to N3LO. While our ongoing
N3LO work is far from finished, we do know that the corrections at NLO are typically at the 10% level in the binding energies.
We should clarify that what we called LO in lattice chiral effective field theory is actually an improved LO calculation where the
S-wave effective range correction is included. If the S-wave effective range correction were not included at LO, then the NLO
correction would be at the 30% level. This 10% correction at NLO might still seem too large since the agreement between the LO
results in this work and the experimental binding energies are better than 10%. However, this better-than-expected agreement can
be explained by the additional fine-tuning we gain by adjusting the balance between local and nonlocal interactions to achieve
accurate liquid drop properties.

The main takeaway message of the work presented here is that while some fine tuning of the chiral forces seems necessary to
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improve convergence at higher densities, the number of independent fine tunings does not appear to be large. While we have not
solved the convergence problem, we characterized the scope of problem. The key remaining question is how to accomplish these
fine tunings without fitting to the many-body data that we wish to predict. We plan to address this question in a forthcoming
publication.

Aside from the Coulomb interaction, all of the other interactions in our minimal model respect Wigner’s SU(4) symmetry. This
is an example of emergent symmetry. The SU(4)-invariant interaction resurges at higher densities not because the underlying
fundamental interaction is exactly invariant, but because the SU(4)-invariant interaction is coherently enhanced in the many-
body environment. This is not to minimize the important role of spin-dependent effects such as spin-orbit couplings and tensor
forces. However, it does seem to suggest that SU(4) invariance plays a key role in the bulk properties of nuclear matter.

The computational effort needed for the auxiliary-field lattice Monte Carlo simulations scales with the number of nucleons,
A, as somewhere between A1 to A2 for medium mass nuclei. The actual exponent depends on the architecture of the computing
platform. The SU(4)-invariant interaction provides an enormous computational advantage by removing sign oscillations from
the lattice Monte Carlo simulations for any even-even nucleus. Coulomb interactions and all other corrections can be imple-
mented using perturbation theory or the recently-developed eigenvector continuation method if the corrections are too large for
perturbation theory [41]. Given the mild scaling with nucleon number and suppression of sign oscillations, the methods pre-
sented here provide a new route to realistic lattice simulations of heavy nuclei in the future with as many as one or two hundred
nucleons. By realistic calculations we mean calculations where one can demonstrate order-by-order convergence in the chiral
expansion going from LO to NLO, NLO to N2LO, and N2LO to N3LO, while maintaining agreement with empirical data.

We thank A. Schwenk for providing the neutron matter results for comparison. We acknowledge partial financial support from
the Deutsche Forschungsgemeinschaft (SFB/TRR 110, “Symmetries and the Emergence of Structure in QCD”), the BMBF (Grant
No. 05P15PCFN1), the U.S. Department of Energy (DE-SC0018638 and DE-AC52-06NA25396), and the Scientific and Tech-
nological Research Council of Turkey (TUBITAK project no. 116F400). Further support was provided by the Chinese Academy
of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (grant no. 2018DM0034) and by VolkswagenStiftung
(grant no. 93562). The computational resources were provided by the Julich Supercomputing Centre at Forschungszentrum
Jülich, Oak Ridge Leadership Computing Facility, RWTH Aachen, and Michigan State University.
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FIG. 1: Nuclear binding energies. The calculated binding energies from 3H to 48Ca. The solid symbols denote the lattice results and the
open symbols denote the experimental values. Different symbols and colors denote different element. The Coulomb interaction is taken into
account perturbatively. The experimental values are taken from Ref. [34].
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FIG. 3: Pure neutron matter. The pure neutron matter (NM) energy as a function of neutron density calculated using the NL50 interaction
with box size L=5 (upright triangles), L=6 (squares), L=7 (rightward-pointing triangles), respectively. The filled red polygons show results
for the leading-order SU(4)-symmetric interaction. The open red polygons show an improved calculation with a short-range interaction to
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we also show results calculated with full N3LO chiral interactions (EM 500 MeV, EGM 450/500 MeV and EGM 450/700 MeV) [37], the
results from variational (APR) [38] and Auxiliary Field Diffusion MC calculations (GCR) [39].
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SUPPLEMENTAL MATERIAL

Auxiliary field formalism

We simulate the interactions of nucleons on the lattice using projection Monte Carlo with auxiliary fields; see Ref. [32, 33]
for an overview of methods used in lattice EFT. We use an auxiliary-field formalism where the interactions among nucleons are
replaced by interactions of nucleons with auxiliary fields at every lattice point in space and time. In the auxiliary-field formalism
each nucleon evolves as if it is a single particle in a fluctuating background of auxiliary fields. We use a single auxiliary field at
LO in the EFT expansion coupled to the total nucleon density. The interactions are reproduced by integrating over the auxiliary
field. In our lattice simulations, the spatial lattice spacing is taken to be a = (150 MeV)−1= 1.32 fm, and the time lattice spacing
is at = (1000 MeV)−1= 0.197 fm. For any fixed initial and final state, the amplitude for a given configuration of auxiliary field
is proportional to the determinant of an A × A matrix Mij . The entries of Mij are the single nucleon amplitudes for a nucleon
starting at state j at τ = 0 and ending at state i at τ = τf .

We use a discrete auxiliary field that can simulate the two-, three- and four-body forces simultaneously without sign oscilla-
tions. To this end we write the interactions in the form,

: exp

(
−1

2
Catρ

2 − 1

6
C3atρ

3 − 1

24
C4atρ

4

)
:=

N∑
k=1

ωk : exp
(√
−Catφkρ

)
:, (4)

where C is the two-body coefficient, C3 is three-body coefficient, C4 is the four-body coefficient, and the :: symbols indicate the
normal ordering of operators. We then solve for the real numbers ωk and φk. In this work we only consider attractive two-body
interactions with C < 0. In order to avoid the sign problem we further require ωk > 0 for all k.

To determine the constants φk and ωk, we expand Eq. (4) up to O(ρ4) and compare both sides order by order. In the context
of the nuclear EFT, the three- and four-body interactions are usually much weaker than the two-body interaction, and we use the
following ansatz with N = 3,

ω1 =
1

φ1(φ1 − φ3)
, ω2 = 1 +

1

φ1φ3
, ω3 =

1

φ3(φ3 − φ1)
(5)

where φ2 = 0 and φ1 and φ3 are two roots of the quadratic equation,

φ2 +
C3√
−C3at

φ− C2
3

C3at
+

C4

C2at
− 3 = 0. (6)

Using Vieta’s formulas relating polynomial coefficients to the sums and products of roots, it is straightforward to verify that
Eq. (5) satisfies Eq. (4) up to O(ρ4). For a pure two-body interaction with C3,4 = 0, the solution is simplified to φ1 = −φ3 =√

3, φ2 = 0, ω1 = ω3 = 1/6, ω2 = 2/3. The formalism Eq. (5) is very efficient for simulating the many-body forces. The
corresponding auxiliary field s(nt,n) only assume three different values φ1, φ2 and φ3 and can be sampled with the shuttle
algorithm described below.

Shuttle algorithm

We update the auxiliary field s(nt,n) using a shuttle algorithm where only one time slice is updated at a time. In Fig. S1
we show a schematic plot sketching the difference between the shuttle algorithm and the Hybrid Monte Carlo (HMC) algorithm
which performs an update of all time slices. The shuttle algorithm works as follows. 1) Choose one time slice nt, record the
corresponding auxiliary field as sold(nt,n). 2) Propose the new auxiliary fields snew(nt,n) at each lattice site n according to
the probability distribution P [snew(nt,n) = φk] = ωk for k = 1, 2, 3. We note that ω1 + ω2 + ω3 = 1. 3) Calculate the
determinant of the A×A correlation matrix Mij using sold(nt,n) and snew(nt,n), respectively. 4) Generate a random number
r ∈ [0, 1) and perform the following “Metropolis test”. If∣∣∣∣det [Mij (snew(nt,n))]

det [Mij (sold(nt,n))]

∣∣∣∣ > r,

accept the new configuration snew(nt,n) and update the wave functions accordingly, otherwise keep sold(nt,n). 5) Proceed
to the next time slice, repeat steps 1)-4), and turn around at the end of the time series. As shown in Fig.S1, the program runs
back-and-forth like a shuttle bus and all the auxiliary fields are updated after one cycle is finished.
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The shuttle algorithm is well suited for small values of the temporal lattice spacing at. In this case the number of time slices
is large and the impact of a single update is small. In each update the new configuation is close to the old one, resulting in a high
acceptance rate. For example, in this work the temporal lattice spacing is at = 0.001 MeV−1 and the accept rate is around 50%
in most cases. We compared the results with the HMC algorithm and found that the new algorithm is more efficient. In most
cases the number of independent configurations per hour generated by the shuttle algorithm is three or four times larger than that
generated by the HMC algorithm.

Charge densities with Coulomb

Auxiliary-field Monte Carlo simulations are efficient for computing the quantum properties of systems with attractive pairing
interactions. By calculating the exact quantum amplitude for each configuration of auxiliary fields, we obtain the full set of
correlations induced by the interactions. However, the exact quantum amplitude for each auxiliary field configuration involves
quantum states which are superpositions of many different center-of-mass positions. Therefore information about density corre-
lations relative to the center of mass is lost. Here we use the recently-developed pinhole algorithm to calculate the charge density
profiles in the center-of-mass frame. The details of the algorithm can be found in Ref. [28].

Let nk = (rk, sk, ik) denote the spatial coordinate, spin and isospin of nucleon k. The one-body density at a point r in the
intrinsic frame can be written as

〈ρ(r)〉 =
1

A!

∑
n1,n2,··· ,nA

〈Ψg.s.|ρA|Ψg.s.〉
A∑
k=1

δ(r − |rk −R|) (7)

where R = 1
A

∑
k rk is the center of mass of A nucleons, |Ψg.s.〉 is the ground state, ρA =: ρ(n1)ρ(n2) · · · ρ(nA) : is the

A-body density operator. The summation over n means a summation over all quantum numbers n1, n2, · · · , nA.
The ground state |Ψg.s.〉 can be rewritten using the projection method,

|Ψg.s.〉 = lim
Lt→∞

MLt |Ψ〉, M =: exp(−atH) :,

where H is the Hamiltonian, M is the tranfer matrix. Then Eq. (7) can be expressed using transfer matrices as

〈ρ(r)〉 =

∑
n〈Ψ|MLt/2ρA(n)MLt/2|Ψ〉

∑A
k=1 δ(r − |rk −R|)∑

n〈Ψ|MLt/2ρA(n)MLt/2|Ψ〉
. (8)

For the full Hamiltonian including Coulomb, Eq. (8) can not be computed directly using the Monte Carlo method because the
repulsive Coulomb interaction induces sign oscillations. To solve this problem we employ perturbation theory. We split the
Hamiltonian into two parts,

H = H(0) +H(1),

where H(0) is the leading order Hamiltonian consisting of the kinetic energy term and the SU(4)-invariant contact interactions,
and H(1) stands for the Coulomb interaction. In what follows we only keep terms linear in H(1) or M (1) and omit all the higher
order terms. The transfer matrix can be split similarly,

M =: exp(−atH) :=: exp(−atH(0)) : −at : exp(−atH(0))H(1) := M (0) +M (1).

Up to O(M (1)) the density Eq. (8) can be written as

〈ρ(r)〉 =
M(0)

ρ +M(1)
ρ

M(0) +M(1)
=
M(0)

ρ

M(0)
+

(
M(1)

ρ

M(0)
− M

(0)
ρ M(1)

(M(0))2

)
+O

(
(M(1))2

)
,

where the amplitudesM(0) andM(0)
ρ are defined as

M(0) =
∑
n

〈Ψ|(M (0))Lt |Ψ〉,

M(0)
ρ =

∑
n

〈Ψ|(M (0))Lt/2ρA(n)(M (0))Lt/2|Ψ〉
A∑
k=1

δ(r − |rk −R|).
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M(1) andM(1)
ρ are obtained by substituting one of the transfer matrices M (0) inM(0) andM(0)

ρ by M (1) and adding up all Lt
possibilities,

M(1) =
∑
n

Lt/2−1∑
nt=0

〈Ψ|(M (0))Lt−nt−1M (1)(M (0))nt |Ψ〉+ c.c.,

M(1)
ρ =

∑
n

Lt/2−1∑
nt=0

〈Ψ|(M (0))Lt/2ρA(n)(M (0))Lt/2−nt−1M (1)(M (0))nt |Ψ〉
A∑
k=1

δ(r − |rk −R|) + c.c..

The four amplitudesM(0),M(1),M(0)
ρ andM(1)

ρ can be calculated using the auxiliary-field formalism described above.

SU(4) breaking effects

Our leading-order interactions fully respect Wigner’s SU(4) symmetry, but this symmetry is only approximate in nature. In
order to optimize the strength of our SU(4) interaction, we calculate the energies of 3H and 4He using interactions corresponding
to different scattering lengths a0 with fixed effective range r0 = 2.2 fm. The results are shown in Fig. S2 as full symbols. For
each interaction we include the leading-order SU(4) breaking effects for the two S-wave channels adjusted to reproduce the
experimental scattering lengths a(1S0) and a(3S1). The corrected energies are calculated using 1st order perturbation theory and
shown as open symbols. The smaller values of a0 correspond to stronger interactions and larger binding energies. From Fig. S2
we can see immediately that the energy corrections for 3H and 4He are both minimized at a0 = 9.1 fm. We take this value for
all of our calculations. This corresponds to a deuteron binding energy of B(2H) = 0.677 MeV.

Volume and surface constants

In this section we present the method for determining the parameter sNL. For each value of sNL we repeat entire process
of fitting a0 = 9.1 fm, r0 = 2.2 fm, and B(3H) = 8.48 MeV. Each time this process results in different values for the local
smearing parameter sL. We obtain five such interactions with sNL =0.40, 0.45, 0.50, 0.55 and 0.60 and denote them as NL40,
NL45, NL50, NL55, and NL60, respectively. We note that since the effective range is kept constant, decreasing sNL corresponds
to increasing sL and thus the range of the local part of the interaction. While we used alpha-alpha scattering to fix the local
part of the interaction in Ref. [21], we are aware that such scattering calculations are difficult for other ab initio methods to
reproduce. Therefore we adopt a different approach that looks at the ground state energies of medium mass nuclei.

For medium mass nuclei with A ≥ 16, the binding energies can be well parameterized with the Bethe-Weizsäcker mass
formula,

B(A) = aVA− aSA
2
3 + ECoulomb + · · · , (9)

where aV and aS are volume-energy and surface-energy constants, respectively,ECoulomb is the Coulomb energy, and the ellipsis
represents other terms such as the symmetry energy, pairing energy, shell correction energy, etc. To avoid fitting complexities
not accurately captured in our minimal nuclear interaction, we fit only N = Z even-even nuclei, for which the symmetry energy
vanishes and the pairing energy varies smoothly. The shell correction energy is known to be much smaller than the macroscopic
contribution in this mass region [43] and thus the first three terms appearing in Eq. (9) dominate.

For each interaction we use the calculated binding energies with 16 ≤ A ≤ 40 to extract the liquid drop constants aV and aS .
We observe prominent shell effects for these nuclei, and the binding energy per nucleon fluctuates around the liquid drop values
with maxima at the magic numbers. In the fitting procedure the shell effects across many nuclei averaged out, thus decreasing
uncertainties for the liquid drop constants. The aS-aV plot is shown in Fig. S3. We can see a linear correlation between these
constants. The values of aS and aV both increase as the strength of the local part of the interaction increases. For comparison,
we also show other values of these constants in the literature where the masses are fitted throughout the entire chart of nuclides.
We find that the interaction NL50 gives a value of aV closest to the other estimations and corresponds to about 16 MeV binding
energy per nucleon at saturation. The uncertainty in aS is large but still matches the empirical values.

Data extrapolation and error analysis

The Monte Carlo errors are calculated with a jackknife analysis. As we employ a leading-order action free from sign oscilla-
tions, in most cases the relative errors from the Monte Carlo simulation are smaller than 1% and are not shown explicitly in the
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figures. The only exceptions are the 40Ca charge density with Coulomb included shown in the lower panel of Fig. 3, where the
Monte Carlo errors become noticeable at small radii.

In all the calculations in this letter we use a fixed number of temporal steps Lt=300. The exact ground state energies can
be obtained by extrapolating to the limit Lt → ∞. To estimate the residual errors from using a finite Lt, we perform multiple
calculations with Lt varying from 100 to 300 for the nuclei listed in Table I. The results are used to fit to the ansatz,

E(Lt) = E0 + c0 exp (−∆ELtat) ,

where E0, c0 and ∆E are fit parameters. The differences between the extrapolated energy E0 and E(Lt = 300) are the time
extrapolation errors shown in Table I.

FIG. S1: Update algorithms. The schematic plot for the HMC algorithm (upper panel), shuttle algorithm (middle panel) and the pinhole
algorithm with a perturbative Coulomb force. The red squares denote the time slices to be updated in each run.
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FIG. S2: Binding energies of 3H and 4He. The solid symbols denote the binding energies of 3H and 4He calculated with leading order
interactions fitted to different scattering length a0 and fixed effective range r0 = 2.2 fm. The open symbols denote the results with the leading
order SU(4) breaking corrections fully included. See the text for details.
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