000873142 001__ 873142
000873142 005__ 20210130004405.0
000873142 0247_ $$2doi$$a10.1016/j.rse.2018.11.039
000873142 0247_ $$2ISSN$$a0034-4257
000873142 0247_ $$2ISSN$$a1879-0704
000873142 0247_ $$2WOS$$aWOS:000484643900064
000873142 037__ $$aFZJ-2020-00587
000873142 082__ $$a550
000873142 1001_ $$00000-0003-4377-8560$$aYang, Peiqi$$b0$$eCorresponding author
000873142 245__ $$aUsing reflectance to explain vegetation biochemical and structural effects on sun-induced chlorophyll fluorescence
000873142 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000873142 3367_ $$2DRIVER$$aarticle
000873142 3367_ $$2DataCite$$aOutput Types/Journal article
000873142 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580136592_31738
000873142 3367_ $$2BibTeX$$aARTICLE
000873142 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873142 3367_ $$00$$2EndNote$$aJournal Article
000873142 520__ $$aThe growing availability of global measurements of sun-induced chlorophyll fluorescence (SIF) can help in improving crop monitoring, especially the monitoring of photosynthetic activity. However, variations in top-of-canopy (TOC) SIF cannot be directly interpreted as physiological changes because of the confounding effects of vegetation biochemistry (i.e. pigments, dry matter and water) and structure. In this study, we propose an approach of using radiative transfer models (RTMs) and TOC reflectance to estimate the biochemical and structural effects on TOC SIF, as a necessary step in retrieving physiological information from TOC SIF. The approach was assessed by using airborne (HyPlant) reflectance and SIF data acquired over an agricultural experimental farm in Germany on two days, before and during a heat event in summer 2015 with maximum temperatures of 27°C and 34°C, respectively. The results show that over 76% variation among different crops in SIF observations was explained by variation in vegetation biochemistry and structure. In addition, the changes of vegetation biochemistry and structure explained as much as 73% variation between the two days in far-red SIF, and 40% variation in red SIF. The remaining unexplained variation was mostly attributed to the variability in physiological status. We conclude that reflectance provides valuable information to account for biochemical and structural effects on SIF and to advance analysis of SIF observations. The combination of RTMs, reflectance and SIF opens new pathways to detect vegetation biochemical, structural and physiological changes.
000873142 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000873142 588__ $$aDataset connected to CrossRef
000873142 7001_ $$00000-0002-2484-8191$$avan der Tol, Christiaan$$b1
000873142 7001_ $$00000-0003-4696-2144$$aVerhoef, Wout$$b2
000873142 7001_ $$00000-0001-8965-3427$$aDamm, Alexander$$b3
000873142 7001_ $$0P:(DE-Juel1)7338$$aSchickling, Anke$$b4
000873142 7001_ $$0P:(DE-HGF)0$$aKraska, Thorsten$$b5
000873142 7001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b6
000873142 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b7
000873142 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2018.11.039$$gVol. 231, p. 110996 -$$p110996 -$$tRemote sensing of environment$$v231$$x0034-4257$$y2019
000873142 8564_ $$uhttps://juser.fz-juelich.de/record/873142/files/Heat_wave_HyPlant.pdf$$yRestricted
000873142 8564_ $$uhttps://juser.fz-juelich.de/record/873142/files/Heat_wave_HyPlant.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873142 909CO $$ooai:juser.fz-juelich.de:873142$$pVDB
000873142 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich$$b6$$kFZJ
000873142 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b7$$kFZJ
000873142 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000873142 9141_ $$y2019
000873142 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873142 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873142 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2017
000873142 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873142 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873142 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873142 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873142 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873142 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873142 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873142 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873142 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873142 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS ENVIRON : 2017
000873142 920__ $$lyes
000873142 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000873142 980__ $$ajournal
000873142 980__ $$aVDB
000873142 980__ $$aI:(DE-Juel1)IBG-2-20101118
000873142 980__ $$aUNRESTRICTED