001     873142
005     20210130004405.0
024 7 _ |a 10.1016/j.rse.2018.11.039
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a WOS:000484643900064
|2 WOS
037 _ _ |a FZJ-2020-00587
082 _ _ |a 550
100 1 _ |a Yang, Peiqi
|0 0000-0003-4377-8560
|b 0
|e Corresponding author
245 _ _ |a Using reflectance to explain vegetation biochemical and structural effects on sun-induced chlorophyll fluorescence
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580136592_31738
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The growing availability of global measurements of sun-induced chlorophyll fluorescence (SIF) can help in improving crop monitoring, especially the monitoring of photosynthetic activity. However, variations in top-of-canopy (TOC) SIF cannot be directly interpreted as physiological changes because of the confounding effects of vegetation biochemistry (i.e. pigments, dry matter and water) and structure. In this study, we propose an approach of using radiative transfer models (RTMs) and TOC reflectance to estimate the biochemical and structural effects on TOC SIF, as a necessary step in retrieving physiological information from TOC SIF. The approach was assessed by using airborne (HyPlant) reflectance and SIF data acquired over an agricultural experimental farm in Germany on two days, before and during a heat event in summer 2015 with maximum temperatures of 27°C and 34°C, respectively. The results show that over 76% variation among different crops in SIF observations was explained by variation in vegetation biochemistry and structure. In addition, the changes of vegetation biochemistry and structure explained as much as 73% variation between the two days in far-red SIF, and 40% variation in red SIF. The remaining unexplained variation was mostly attributed to the variability in physiological status. We conclude that reflectance provides valuable information to account for biochemical and structural effects on SIF and to advance analysis of SIF observations. The combination of RTMs, reflectance and SIF opens new pathways to detect vegetation biochemical, structural and physiological changes.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a van der Tol, Christiaan
|0 0000-0002-2484-8191
|b 1
700 1 _ |a Verhoef, Wout
|0 0000-0003-4696-2144
|b 2
700 1 _ |a Damm, Alexander
|0 0000-0001-8965-3427
|b 3
700 1 _ |a Schickling, Anke
|0 P:(DE-Juel1)7338
|b 4
700 1 _ |a Kraska, Thorsten
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Muller, Onno
|0 P:(DE-Juel1)161185
|b 6
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 7
773 _ _ |a 10.1016/j.rse.2018.11.039
|g Vol. 231, p. 110996 -
|0 PERI:(DE-600)1498713-2
|p 110996 -
|t Remote sensing of environment
|v 231
|y 2019
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/873142/files/Heat_wave_HyPlant.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/873142/files/Heat_wave_HyPlant.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:873142
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161185
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21