000873143 001__ 873143
000873143 005__ 20210130004406.0
000873143 0247_ $$2doi$$a10.1016/j.pbi.2019.06.007
000873143 0247_ $$2ISSN$$a1369-5266
000873143 0247_ $$2ISSN$$a1879-0356
000873143 0247_ $$2altmetric$$aaltmetric:64877458
000873143 0247_ $$2pmid$$apmid:31387067
000873143 0247_ $$2WOS$$aWOS:000486357700019
000873143 037__ $$aFZJ-2020-00588
000873143 041__ $$aEnglish
000873143 082__ $$a580
000873143 1001_ $$0P:(DE-HGF)0$$aMahlein, Anne-Katrin$$b0$$eCorresponding author
000873143 245__ $$aQuantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!
000873143 260__ $$aLondon$$bCurrent Biology Ltd.$$c2019
000873143 3367_ $$2DRIVER$$aarticle
000873143 3367_ $$2DataCite$$aOutput Types/Journal article
000873143 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581056885_22023
000873143 3367_ $$2BibTeX$$aARTICLE
000873143 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873143 3367_ $$00$$2EndNote$$aJournal Article
000873143 520__ $$aDetermination and characterization of resistance reactions of crops against fungal pathogens are essential to select resistant genotypes. In plant breeding, phenotyping of genotypes is realized by time consuming and expensive visual plant ratings. During resistance reactions and during pathogenesis plants initiate different structural and biochemical defence mechanisms, which partly affect the optical properties of plant organs. Recently, intensive research has been conducted to develop innovative optical methods for an assessment of compatible and incompatible plant pathogen interaction. These approaches, combining classical phytopathology or microbiology with technology driven methods — such as sensors, robotics, machine learning, and artificial intelligence — are summarized by the term digital phenotyping. In contrast to common visual rating, detection and assessment methods, optical sensors in combination with advanced data analysis methods are able to retrieve pathogen induced changes in the physiology of susceptible or resistant plants non-invasively and objectively. Phenotyping disease resistance aims different tasks. In an early breeding step, a qualitative assessment and characterization of specific resistance action is aimed to link it, for example, to a genetic marker. Later, during greenhouse and field screening, the assessment of the level of susceptibility of different genotypes is relevant. Within this review, recent advances of digital phenotyping technologies for the detection of subtle resistance reactions and resistance breeding are highlighted and methodological requirements are critically discussed
000873143 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000873143 588__ $$aDataset connected to CrossRef
000873143 7001_ $$0P:(DE-HGF)0$$aKuska, Matheus Thomas$$b1
000873143 7001_ $$0P:(DE-Juel1)162287$$aThomas, Stefan$$b2
000873143 7001_ $$0P:(DE-HGF)0$$aWahabzada, Mirwaes$$b3
000873143 7001_ $$0P:(DE-HGF)0$$aBehmann, Jan$$b4
000873143 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b5
000873143 7001_ $$0P:(DE-HGF)0$$aKersting, Kristian$$b6
000873143 773__ $$0PERI:(DE-600)2019227-7$$a10.1016/j.pbi.2019.06.007$$gVol. 50, p. 156 - 162$$p156 - 162$$tCurrent opinion in plant biology$$v50$$x1369-5266$$y2019
000873143 909CO $$ooai:juser.fz-juelich.de:873143$$pVDB
000873143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b5$$kFZJ
000873143 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000873143 9141_ $$y2019
000873143 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873143 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR OPIN PLANT BIOL : 2017
000873143 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873143 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873143 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873143 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873143 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873143 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873143 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873143 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873143 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873143 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000873143 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000873143 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000873143 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings
000873143 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCURR OPIN PLANT BIOL : 2017
000873143 920__ $$lyes
000873143 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000873143 980__ $$ajournal
000873143 980__ $$aVDB
000873143 980__ $$aI:(DE-Juel1)IBG-2-20101118
000873143 980__ $$aUNRESTRICTED