000873143 001__ 873143 000873143 005__ 20210130004406.0 000873143 0247_ $$2doi$$a10.1016/j.pbi.2019.06.007 000873143 0247_ $$2ISSN$$a1369-5266 000873143 0247_ $$2ISSN$$a1879-0356 000873143 0247_ $$2altmetric$$aaltmetric:64877458 000873143 0247_ $$2pmid$$apmid:31387067 000873143 0247_ $$2WOS$$aWOS:000486357700019 000873143 037__ $$aFZJ-2020-00588 000873143 041__ $$aEnglish 000873143 082__ $$a580 000873143 1001_ $$0P:(DE-HGF)0$$aMahlein, Anne-Katrin$$b0$$eCorresponding author 000873143 245__ $$aQuantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed! 000873143 260__ $$aLondon$$bCurrent Biology Ltd.$$c2019 000873143 3367_ $$2DRIVER$$aarticle 000873143 3367_ $$2DataCite$$aOutput Types/Journal article 000873143 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581056885_22023 000873143 3367_ $$2BibTeX$$aARTICLE 000873143 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000873143 3367_ $$00$$2EndNote$$aJournal Article 000873143 520__ $$aDetermination and characterization of resistance reactions of crops against fungal pathogens are essential to select resistant genotypes. In plant breeding, phenotyping of genotypes is realized by time consuming and expensive visual plant ratings. During resistance reactions and during pathogenesis plants initiate different structural and biochemical defence mechanisms, which partly affect the optical properties of plant organs. Recently, intensive research has been conducted to develop innovative optical methods for an assessment of compatible and incompatible plant pathogen interaction. These approaches, combining classical phytopathology or microbiology with technology driven methods — such as sensors, robotics, machine learning, and artificial intelligence — are summarized by the term digital phenotyping. In contrast to common visual rating, detection and assessment methods, optical sensors in combination with advanced data analysis methods are able to retrieve pathogen induced changes in the physiology of susceptible or resistant plants non-invasively and objectively. Phenotyping disease resistance aims different tasks. In an early breeding step, a qualitative assessment and characterization of specific resistance action is aimed to link it, for example, to a genetic marker. Later, during greenhouse and field screening, the assessment of the level of susceptibility of different genotypes is relevant. Within this review, recent advances of digital phenotyping technologies for the detection of subtle resistance reactions and resistance breeding are highlighted and methodological requirements are critically discussed 000873143 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000873143 588__ $$aDataset connected to CrossRef 000873143 7001_ $$0P:(DE-HGF)0$$aKuska, Matheus Thomas$$b1 000873143 7001_ $$0P:(DE-Juel1)162287$$aThomas, Stefan$$b2 000873143 7001_ $$0P:(DE-HGF)0$$aWahabzada, Mirwaes$$b3 000873143 7001_ $$0P:(DE-HGF)0$$aBehmann, Jan$$b4 000873143 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b5 000873143 7001_ $$0P:(DE-HGF)0$$aKersting, Kristian$$b6 000873143 773__ $$0PERI:(DE-600)2019227-7$$a10.1016/j.pbi.2019.06.007$$gVol. 50, p. 156 - 162$$p156 - 162$$tCurrent opinion in plant biology$$v50$$x1369-5266$$y2019 000873143 909CO $$ooai:juser.fz-juelich.de:873143$$pVDB 000873143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b5$$kFZJ 000873143 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000873143 9141_ $$y2019 000873143 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000873143 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCURR OPIN PLANT BIOL : 2017 000873143 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000873143 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000873143 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000873143 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000873143 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000873143 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000873143 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000873143 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000873143 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000873143 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000873143 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000873143 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000873143 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings 000873143 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCURR OPIN PLANT BIOL : 2017 000873143 920__ $$lyes 000873143 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000873143 980__ $$ajournal 000873143 980__ $$aVDB 000873143 980__ $$aI:(DE-Juel1)IBG-2-20101118 000873143 980__ $$aUNRESTRICTED