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Abstract

Integrated product and process design aims at developing innovative products

that provide a desired functionality and are produced efficiently. Tailor-made

fuels from renewable feedstocks pose a prominent, societally-relevant example.

We build upon the integrated design method from Dahmen & Marquardt (2017)

and combine it with the production pathway screening tool from Ulonska et al.

(2016). We thus design a tailor-made fuel and its optimal production process by

minimizing economic and environmental criteria, i.e., cost and global warming

impact (GWI). We consider the production of a tailor-made spark-ignition engine

fuel from lignocellulosic biomass. Simultaneous process and product design yields

optimal multi-component fuels that consist of ethanol, isobutanol, butanone,

cyclopentane, and 2-methylfuran with production costs of 18-22 $ per GJfuel and

GWI values of 38-61 kgCO2eq. per GJfuel. The proposed method and its solution

strategies are, in principle, universal and thus also applicable to products other

than fuels.
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1. Introduction

Integrated design of chemical products and processes is concerned with the

search for chemical products with desired properties and the development of

associated production processes. It aims at a product that is tailored to the

intended use and can be produced with high efficiency. A societally-relevant5

product is given by renewable fuels for advanced, clean, and efficient internal

combustion engines (ICEs) as they offer the potential to mitigate climate change

and fossil resource dependency.

Chemical product design constitutes one of the two subdisciplines of integrated

process and product design with the other one being chemical process design.10

Chemical product design considers products that are defined by their functionality

rather than their molecular structure (Cussler & Moggridge, 2001). It can

refer either to the design of novel molecular structures or to the selection and

combination of existing candidate structures (Ng & Gani, 2019). If the desired

properties cannot be met by a single species, multi-component products are15

required (Gani, 2004). To design such formulated products, i.e., products formed

by a mix of selected components, Conte et al. (2011) have developed a first,

generic framework that includes computer-aided design techniques as an essential

step.

With road transport currently accounting for half of the OECD’s oil demand20

(Statista, 2017), the design of renewable fuels for advanced, clean and efficient

ICEs poses an especially relevant product design problem. Since a single species

often cannot fulfil all fuel specifications, fuel design is typically posed as a

mixture design problem (Ng & Gani, 2019). In particular, Yunus et al. (2014)

have presented a method for formulating gasoline/biofuel blends with maximal25

biofuel content whereas Ariffin Kashinath et al. (2012) have conducted a blend

design study for diesel/biofuel blends that has later been modified and coupled

with experimental property validation in a study by Hashim et al. (2017). All

three studies focus on product design only. However, tailoring the fuel mixture
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properties to engine requirements does not suffice but instead fuel production30

also needs to be considered to find overall sustainable solutions.

Many mixture design studies implicitly account for the production process by

optimizing for cumulative cost of mixture components (Ariffin Kashinath et al.,

2012; Conte et al., 2011; Hashim et al., 2017). However, for novel components and

processes, component costs and other process-related performance criteria may35

not be readily available. Furthermore, if the components can be co-produced

from a common feedstock in a single process, synergies may arise resulting

in lower costs than purchasing the individual species from separate sources.

To compute first cost estimates for these cases, (early-stage) process design is

required.40

At an early stage of process design, many design decisions are not yet fixed.

Thus, different raw materials, conversion pathways, unit operations, and op-

erating conditions, are conceivable. These alternative design options can be

systematically evaluated using optimization-based methods, i.e., superstructure

or network screening approaches (Biegler et al., 1997). Several detailed super-45

structures have been proposed in the context of biorenewable processing (Garcia

& You, 2015; Kong et al., 2016; Giuliano et al., 2016). In particular, Giuliano

et al. (2016) have optimized a detailed superstructure for ethanol, succinic

acid and levulinic acid production demonstrating the benefits of co-producing

bio-based products from a single feedstock. However, if little process data is50

available, instead of detailed superstructures, first evaluations are typically based

only on material balances (Siirola & Rudd, 1971). To this end, rapid screening

methods have been developed, e.g., the shortcut method of Bao et al. (2011) or

Reaction Network Flux Analysis (RNFA) (Voll & Marquardt, 2012). Extending

such mass-based analysis with energy-based evaluation of separation demands,55

Ulonska et al. (2016) have developed Process Network Flux Analysis (PNFA),

an optimization-based method that allows to derive first estimates on invest-

ment and operating cost as well as emission criteria such as global warming

impact (GWI). PNFA has recently been adapted to better allow for feedstock

comparisons in a large process screening for the production of 13 renewable60
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single-component fuels (König et al., 2019). However, as PNFA is no product

design method, it requires a priori specification of a chemical product.

Moving towards more integrated evaluations of product and production

process design, Ng et al. (2015) have presented a two-stage method that first

optimizes the product mixture and then determines the optimal production65

scheme. Similarly, Hechinger et al. (2010) have proposed sequential strategies

that link fuel design with production pathway screening, i.e., RNFA. However, as

neither method performs simultaneous process and product design, they do not

fully capture the interplay between an efficient production and feasible product

compositions. To explore both process-related and product-related degrees of70

freedom at the same time, a stronger integration of process and product design

has often been envisaged (Grossmann, 2004; Victoria Villeda et al., 2012), but

hardly realized.

A simultaneous design approach for biofuel/gasoline blends is proposed

by Marvin et al. (2013) who optimize reaction pathways of an automatically75

constructed reaction network under simultaneous consideration of linear fuel

property models. Using more detailed property models that account for nonideal

thermodynamics, Dahmen & Marquardt (2017) present a simultaneous product

and reaction pathway design method that formulates multi-component biofuels.

However, like Marvin et al. (2013), the pathway model assumes ideal and80

instantaneous separations of by-products and does not account for process energy

demands, i.e., heating, cooling, and electricity duties. Due to this simplified

pathway evaluation, Dahmen & Marquardt (2017) could not perform fuel design

by explicitly taking into account economic process-related performance criteria

nor could they estimate process emissions.85

In summary, so far no integrated product and production process design

method has been proposed which can optimize both processing routes and

multi-component products considering highly-relevant objectives such as cost

and GWI. To overcome this gap, we adapt the simultaneous design approach

by Dahmen & Marquardt (2017) and combine it with the pathway model of90

PNFA (Ulonska et al., 2016; König et al., 2019) thus enabling cost and GWI
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2.1. Pathway Model

Our pathway model is based on PNFA (Ulonska et al., 2016; König et al.,110

2019), a pathway screening method which evaluates not only reaction pathways

but also downstream processing options and associated process energy demands

thus allowing for cost and GWI estimation.

In the pathway model, products are connected to feedstocks via conversion

steps and intermediate products. All considered pathway options and associated115

components can be represented by a reaction network where nodes symbolize

compounds and edges denote conversion steps. For each compound of the

network, mole balances are formulated which rely on stoichiometry and yield

data thus mapping conversion fluxes and components to each other (Ulonska

et al., 2016; König et al., 2019). A detailed description of the mole balance120

equations is found in the Supplementary Material in section 1.1.1.

Like PNFA, the proposed pathway model incorporates process energy de-

mands of reactions and separations. These energy demands include heating,

cooling, and electricity duties which are calculated a priori for each conversion

step. With respect to reaction pathways, the specific heating and cooling duties125

are approximated by the respective heat of reaction whereas the specific electric-

ity duty is considered for high-pressure gas-phase reactions assuming a polytropic

process (Biegler et al., 1997; Ulonska et al., 2016). With respect to separation

steps, energy demands are determined by means of thermodynamically-sound,

reduced-order separation models, e.g., Rectification Body Method (RBM) (Bausa130

et al., 1998; Kraemer et al., 2011), a pinch-based method capable of analyzing

zeotropic and (hetero-)azeotropic distillation considering the NRTL model for

estimating activity coefficients. For such thermal separations, heat integration is

considered in the form of optional vapor recompression (VRC). Other measures of

heat integration, e.g., pinch analysis or combustion of waste materials for internal135

energy supply are not included in this work. For a more detailed description

of the energy demand calculations the reader is referred to section 1.1.2 of the

Supplementary Material.

Based on the mole balances and process energy demands, production costs
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can be estimated. These incorporate raw material costs (biomass and auxiliary140

feedstock costs), waste disposal costs, investment costs, and utility costs (steam,

cooling water, and electricity costs). In contrast to PNFA, we use the continuous,

empirical investment cost correlation proposed by Lange (2001),

IC =
CEPCI2016
CEPCI1993

· 2.9 · (Etransfer duty [MW])0.55 [million $], (1)

that links the investment costs, IC, to the energy transfer duties of the process

(Etransfer duty) that are in turn based on the process energy demands (Lange,145

2001). Furthermore, the investment costs are updated from 1993-$ to 2016-$ by

means of the Chemical Engineering Plant Cost Index, CEPCI. Lange’s estimates

(cf. Eq. 1) are ranked among the most accurate ones as shown by Tsagkari et al.

(2016) who compare six early-stage costing methods to actual costs from existing

or planned biorefineries. A more detailed description of the equations used for150

cost estimation is given in section 1.1.3 of the Supplementary Material.

In addition to a first economic evaluation, we also analyze environmental

measures. While simple mass-based criteria like raw material efficiency measures

are conceivable (Voll, 2014), climate researchers often refer to emission-related

indicators such as GWI (in former PNFA publications (König et al., 2019; Ulonska155

et al., 2018, 2016) less precisely called global warming potential (GWP)) as

an environmental sustainability measure. We calculate GWI by taking into

account emissions of the required utilities (Ulonska et al., 2016) and emissions

related to upstream burdens of the feedstocks, i.e., chemical processing steps

required for producing feedstocks such as hydrogen (König et al., 2019). We160

neglect emissions related to feedstock transportation as the focus is strictly on

evaluating the chemical conversion pathways. Hence, in contrast to detailed Life

Cycle Assessment, our pathway model only provides a rough emission estimate,

appropriate for early-stage process design. We use a well-to-wheel system

boundary that assumes that all carbon stored in the feedstock is released back165

into the atmosphere during fuel combustion. The associated model equations

are summarized in section 1.1.4 of the Supplementary Material.
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2.2. Product Model

A product model consisting of fuel property models ensures that the formu-

lated mixture meets the desired specifications, i.e., a set of physico-chemical fuel170

properties. An overview of the fuel properties considered in this work and their

influence on engine performance is given in Tab. 1.

Table 1: Engine requirements and corresponding fuel properties from Dahmen & Marquardt

(2017)

Engine requirement Fuel property

auto-ignition/knock resistance derived cetane number DCN [-]

soot emissions oxygen content O2 [wt-%]

in-cylinder mixture formation

surface tension σ
[

mN
m

]

kinematic viscosity ν

[

mm2

s

]

enthalpy of vaporization Hvap

[

kJ
kgair,Φ=1

]

Reid vapor pressure pReid [kPa]

distillation curve [◦C]

To predict the fuel properties, we use mixture property models that rely

on pure-component properties. The latter are determined a priori either from

experimental data compiled, e.g., by Yanowitz et al. (2017); AIChE (2018), or,175

if not available, via model-based approaches, e.g., Dahmen & Marquardt (2016);

Gmehling (2012). Fuel property models for the derived cetane number (DCN),

oxygen content (O2), surface tension (σ), kinematic viscosity (ν), the enthalpy of

vaporization (Hvap) and the Reid vapor pressure (pReid) are taken from Dahmen

& Marquardt (2017) and can be found in section 1.2 of the Supplementary180

Material.

In contrast to Dahmen & Marquardt (2017) we use a simplified model for the

distillation curve, i.e., the True Boiling Point (TBP) curve (Eckert & Vaněk, 2003;

Reiter et al., 2015), to improve the tractability of the resulting optimization

problem. Here, the normal boiling points (NBPs) of the pure components185

approximate the distillation temperature of the mixture. More precisely, the

mixture components are first ordered by their NBP. Then, the pure-component
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2.3. Optimization Problem and Solution Strategies

The optimization problem is formulated with specific cost, Cspec, in $ per

GJfuel and specific GWI, GWIspec, in kgCO2 eq. per GJfuel as objectives. To

determine the specific cost and GWI, overall production cost Coverall and overall

GWI are divided by a fixed annual fuel production of α = 2.77 · 1012 kJ per205

year. This value equals approx. 100,000 tons of ethanol per year and can be

calculated using the lower heating value, i.e., enthalpy of combustion Hcomb, of

the produced fuel components (cf. Eq. S3 in the Supplementary Material). If

other production scales were considered, absolute fuel cost would change due

to economies of scale, however, this type of analysis is beyond the scope of the210

current study. The complete optimization problem reads:
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min











Cspec =
Coverall

α
(Coverall from Eq. S14)

GWIspec =
GWI
α

(GWI from Eq. S15)











s.t. pathway model

mole balances for products and side products incl. yields (Eqs. S1-S2),

energy demands of reactions and separations (Eqs. S4-S7),

raw material costs (Eq. S8)

waste costs (Eq. S9)

utility costs (Eq. S10)

investment costs (Eqs. 1, S12, S13),

fixed production α (Eq. S3)

fuel property model

mole and mass fractions of fuel (Eqs. S17 and S19),

DCN of fuel (Eq. S16),

oxygen content of fuel (Eq. S18),

viscosity of fuel (Eqs. S21 and S23),

surface tension of fuel (Eqs. S20) and S22)

enthalpy of vaporization of fuel (Eq. S24),

Reid vapor pressure of fuel (Eqs. S25 and S28),

distillation curve model: TBP curve (Eqs. S29 - S30, S33 - S36)

nonnegativity constraints for fluxes and products

y ∈ {0, 1}.

(2)

We implement the resulting mixed-integer nonlinear program in GAMS

V25.1.1 (GAMS Development Corporation, 2018) and solve it using the deter-

ministic global solver BARON V18.5.8 (Kılınç & Sahinidis, 2017; Tawarmalani
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& Sahinidis, 2005) with standard subsolver settings. We set branching priorities215

to some of the variables that are present in the nonlinear mixing rules, i.e., a

branching priority of 100 for the activity coefficients needed for Reid vapor pres-

sure calculation, a branching priority of 100 to mole fractions, and a branching

priority of 30 to the molar product flux vector. The relative solving tolerance is

set to 0.01.220

We convert the multi-objective optimization problem of Eq. 2 into single

objective problems by means of the ǫ-constraint method (Haimes et al., 1971). To

improve the initial search for feasible solutions, the problem is initialized by first

solving the fuel property model using a dummy objective of zero. Subsequently,

for the feasible fuel, we optimize the process variables with respect to cost using225

the pathway model only. Finally, we use the solution as an initial point to the

complete problem of Eq. 2. Similar to Dahmen & Marquardt (2017), we check

the miscibility of the resulting multi-component fuel at a temperature of 25◦C

and atmospheric pressure by minimizing the tangent plane distance function

(Baker et al., 1982; Michelsen, 1982) a posteriori.230

For comparison, we also implement a sequential approach for the point of

minimal cost, i.e., the Pareto-optimal solution with lowest cost, and the point of

minimal GWI, i.e., the Pareto-optimal solution with lowest GWI. It follows the

idea of an iterative cycle for integrated product and process design by Hechinger

et al. (2010) and is illustrated in Fig. S1 of the Supplementary Material. In235

the first step of the sequential strategy, minimal costs (GWIs) of the individual

fuel components are determined using only the pathway model. These minimal

individual component costs (GWIs) are then passed on to Step 2, where the fuel

composition is optimized for a fixed production volume α under consideration of

only the product model and by a weighted average of the individual component240

costs (GWIs). The resulting optimal composition represents a feasible fuel,

however, the weighted average of the individual component costs (GWIs) may

overstate the costs (GWIs) that could be achieved by co-producing all fuel

components in one plant from the same feedstock. Thus, in Step 3, PNFA is

used again to optimize the pathways for the fixed fuel composition obtained245
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from Step 2.

3. Tailor-Made Biofuels for Advanced Spark-Ignition Engines

The proposed method is applied to tailor-made fuels for advanced highly

boosted direct-injection SI engines which aim for high efficiency and low pollutant

emissions (Hoppe et al., 2015). The fuel specifications seen in Tab. 2 are250

considered.

Table 2: Fuel property specifications for a highly boosted direct-injection SI engine (adapted

from Dahmen & Marquardt (2017)).

Fuel Property min max

derived cetane number DCN [-] − 10

oxygen content O2 [wt-%] 10 −

surface tension σ
[

mN
m

]

− 30

kinematic viscosity ν
[

mm2

s

]

0.5 2.0

enthalpy of vaporization Hvap

[

kJ
kgair,Φ=1

]

− 60

Reid vapor pressure pReid [kPa] 45 100

distillation curve

temperature at 10 mol-% evaporated T10m [◦C] 45 70

temperature at 50 mol-% evaporated T50m [◦C] 65 125

temperature at 90 mol-% evaporated T90m [◦C] 65 190

We consider seven potential fuel components, i.e., ethanol, isobutanol, 2-

butanone, 2-methylfuran (2-MF), 2,5-dimethylfuran (2,5-DMF), cyclopentanone,

and cyclopentane which can be derived from lignocellulosic biomass. Important

properties of the seven potential components are summarized in Tab. S8 of the255

Supplementary Material.

Fig. 3 shows the reaction network. For simplicity, conversion steps for

mixing and separations are not shown. Lignocellulosic biomass is the main raw

material with an assumed composition similar to that of beech wood, i.e., 47.7

mol-% cellulose (modeled as C6H10O5), 35.1 mol-% hemicellulose (modeled as260
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ble global warming impact (IINAS, 2015) are considered whereas hydrogen is

associated to approx. 1 kg CO2 eq. per kg H2 when accounting for the energy

demands of gasifying residual biomass (Mehmeti et al., 2018). The specific values

are summarized in Tab. S7 of the Supplementary Material.280

To compute Reid vapor pressure and assess phase stability, we estimate

NRTL parameters based on COSMO-RS data (COSMOlogic GmbH & Co. KG,

2017) (cf. Tab. S9 of the Supplementary Material).

4. Optimal Fuels via Integrated Process and Fuel Design

Fig. 4 shows the optimization results. The pathway performances of the285

individual fuel components along with the Pareto front of the optimal multi-

component fuels are given Fig. 4a). Fig. 4b) shows a magnified version of the

Pareto front of the optimal multi-component fuels determined by simultaneous

process and product design. Fig. 4c) presents the composition of the optimal

multi-component fuels and Fig. 4d) displays the fuel properties in relation to290

their lower and upper bound restrictions with active constraints marked in black.

The designed, optimal multi-component fuels exhibit production costs be-

tween 18 and 22 $ per GJfuel with GWI values between 38 and 61 kgCO2eq. per

GJfuel (cf. Fig. 4a) and b)). All optimal multi-component fuels feature high

isobutanol contents. Ethanol, 2-butanone, and cyclopentane are included in the295

cost-optimal multi-component fuel but are (partially) substituted by 2-MF as

GWI decreases (cf. Fig. 4c)). With respect to the fuel properties, Fig. 4d)

shows that while all multi-component fuels are highly knock-resistant, i.e., DCN

values of 5-8, they are also associated to low Reid vapor pressure, high enthalpy

of vaporization, and high viscosities. In the following, these results are further300

analyzed and set into context.

The GWI values of the optimal multi-component fuels lie below the fossil

benchmark of 94 kgCO2eq. per GJfuel (European Parliament and the Council of

the European Union, 2018). However, further potential for GWI reduction exists

since future steam and electricity generation is expected to rely on much higher305
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shares of renewables. Considering lower GWI factors would lead to linearly

decreased overall GWIs.

The pronounced Pareto front of the multi-component fuels in Fig. 4b)

indicates a trade-off between cost and GWI. In the region of minimal cost, the

Pareto front is especially steep. This is mainly due to the minor cost benefits of310

simple un-integrated columns in comparison to heat-integrated VRC columns

that exhibit significantly reduced emissions (cf. list of all active conversion fluxes

in Tab. S10 of the Supplementary Material).

The results can be further analyzed by setting the optimal fuel composition

(cf. Fig. 4c)) into context with the pathway performance of the individual315

fuel components (cf. Fig. 4a)). The latter have been computed for compar-

ison only, as none of the individual fuel components can meet all the engine

requirements specified in Tab. 2. From Fig. 4a) it can be seen that ethanol,

followed by isobutanol, exhibits the best pathway performance with low cost

and low GWI. Thus, it is plausible that ethanol and isobutanol are present in320

all optimal multi-component fuels (cf. Fig. 4c)). In case of the cost-optimal

multi-component fuel, isobutanol and ethanol are complemented by 2-butanone

and cyclopentane. However, 2-butanone and cyclopentane production is associ-

ated to rather high emissions due to energy-intensive intermediate separations,

i.e., water/2,3-butanediol and water/cyclopentanone separation, respectively. In325

contrast, 2-MF can reach lower GWI values than 2-butanone and cyclopentane

but is associated to higher production costs than 2-butanone (cf. Fig. 4a)).

Hence, at the point of minimal GWI, cyclopentane and, in part, 2-butanone

are substituted with a larger share of 2-MF (cf. Fig. 4c)) even though this

is associated to a reduced share of ethanol to still be able to meet the fuel330

specifications. Lastly, cyclopentanone and 2,5-DMF are associated to both high

cost and high GWI (cf. Fig. 4a)), explaining why they are not added to the

optimal fuels.

The properties of the optimal multi-component fuels show the viscosity, the

Reid vapor pressure, and the enthalpy of vaporization as limiting factors in335

this case study since they often/always lie at the respective bounds (cf. black
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minimal cost, the fuel consists of 36 mol-% (27 wt-%) ethanol, 31 mol-% (37

wt-%) isobutanol, 16 mol-% (18 wt-%) 2-butanone, and 16 mol-% (18 wt-%)

cyclopentane. The cellulose fraction of the biomass feedstock is hydrolyzed to

C6-sugars represented by glucose (R5). These are utilized for isobutanol (R38)

and 2-butanone production (R35, R41). The hemicellulose fraction is hydrolyzed355

to C5-sugars represented by xylose (R4) and further converted to cyclopentane

(R15, R47, R48) and ethanol (R7). Interestingly, ethanol is not produced from

cellulose. This can be explained by the fact that isobutanol and 2-butanone

can only be produced from cellulose. Thus, to enable a more efficient use of all

biomass fractions and to avoid additional raw material cost, ethanol is produced360

from the remaining hemicellulose fraction only. At the point of minimal GWI,

the fuel consists of 11 mol-% (7 wt-%) ethanol, 43 mol-% (42 wt-%) isobutanol,

4 mol-% (4 wt-%) 2-butanone, and 43 mol-% (47-wt%) 2-MF (cf. Fig. 5). Here,

all fuel components, even ethanol, are produced from cellulose. This leads to

higher raw material costs but lower energy demands and thus lower emissions.365

So far, only the results of the simultaneous design strategy have been pre-

sented. Fig. 6 compares them to the results of the sequential approach. It is

seen that identical designs are found for the point of minimal GWI, however,

results for the point of minimal cost differ. Here, the sequential approach reaches

a solution that is suboptimal with costs of 19.1 $ per GJ and GWI of 60 kg CO2370

eq. per GJ compared to cost of 17.5 $ per GJ and a GWI of 61 CO2 eq. per

GJ for the simultaneous approach. This is because the sequential approach does

not fully account for the fact that all fuel components share the same common

feedstock. Since the optimal fuel composition has been determined based on the

costs of the individual components, the fuel designed by the sequential approach375

consists of more cellulose-based components, i.e., 36% instead of 31% isobutanol,

29% instead of 16% 2-butanone, and 10% instead of 0% 2-MF (cf. Fig. S2 of

the Supplementary Material). In particular, hemicellulose-based cyclopentane,

which is associated to rather high cost as a single component, can contribute to

a more balanced use of all biomass fractions in the simultaneous design while it380

is not part of the blend in the decomposed approach. This inefficient biomass
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results should be experimentally validated in the future. If phase separation

is confirmed, the blends need to be further refined, e.g., by using stability-

enhancing additives such as those investigated by Lapuerta et al. (2007). In400

principle, rigorous phase separation calculations could also be integrated into

the optimization problem. However, this will lead to a bi-level problem and thus

substantially increase computational solving effort.

Experimental validation of the designed blends is also desired with respect

to the fuel properties, especially those with active lower or upper bounds,405

i.e., viscosity, heat of vaporization, and Reid vapor pressure. In particular,

approximation of the Reid vapor pressure by the bubble point pressure leads

to slight overestimates (Dahmen & Marquardt, 2017). In case of meaningful

overestimation, raising the bounds of the Reid vapor pressure variable in the

optimization problem represents a pragmatic approach that does not increase410

problem complexity.

Fuel property assessment should prospectively also be augmented with an

iterative refinement of the fuel specifications based on detailed understanding of

the fuel/engine interactions. To tailor the fuel to the engine and vice versa, it is

important that process engineers and engine designers work closely together.415

In addition to experimental property refinement and validation, the optimal

pathway designs should be further evaluated in conceptual process design. Even

though our PNFA-based pathway model is more sophisticated than purely mass-

based pathway models, its cost and GWI estimates are expected to be subject

to relatively high uncertainties since it is still an early-stage screening method.420

Primary reasons for this are the rather crude estimation of investment costs,

the differing technological maturity of the pathways, and the assumption that

lab-scale yield data is representative for the performance of an industrial-scale

production process. Some conversion steps also needed to be strongly simplified.

In particular, for biomass pretreatment, we assume that the biomass fractions425

can be separated such that they can be utilized independently of each other.

To give an idea of the accuracy of cost and emission estimates obtained from

PNFA, Ulonska et al. (2018) have compared the minimum selling prices and
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GWIs for ethanol to literature values based on conceptual design. In this study,

PNFA estimated cost and GWI in the right order of magnitude (Ulonska et al.,430

2018). The same conclusion has been drawn for further literature comparisons

of isobutanol and ethyl levulinate production cost (Skiborowski, 2018). However,

it is still unclear, to which extent these findings can be generalized. To reduce

uncertainties, detailed sizing and costing, heat integration, and possibly process

intensification measures must be applied.435

5. Conclusion

We have presented a new method for integrated design of multi-component

fuels and their production processes. The method combines the simultaneous

reaction pathway and fuel design approach by Dahmen & Marquardt (2017) with

the pathway model from PNFA by Ulonska et al. (2016); König et al. (2019).440

This enables formulation of tailor-made fuels under consideration of associated

production processes on a level of detail that allows for economic as well as envi-

ronmental optimization. Thus, the proposed model-based approach substitutes

early-stage iterative and typically manual design cycles. As a screening tool, it

gives first insights on efficient production processes and feasible products.445

We designed a variety of Pareto-optimal SI engine biofuels and associated

production processes with costs of 18-22 $ per GJfuel and GWI values of 38-61

kgCO2eq. per GJfuel. All optimal fuels consist of more than 50 mol-% ethanol and

isobutanol, which are produced at relatively low cost and GWI, complemented

by varying amounts of 2-butanone, 2-MF, and cyclopentane to meet the fuel450

specifications.

The results of the simultaneous pathway and fuel design approach have also

been compared to designs of a more computationally-efficient sequential strategy.

Even though the sequential approach is not always capable of fully exploiting the

synergies arising from co-production of fuel components from a single feedstock,455

it has yielded near-optimal solutions in our case study. It is therefore considered

an interesting option for initialization and use as a heuristic.
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Nomenclature470

Abbreviations

2-MF 2-methylfuran

2,5-DMF 2,5-dimethylfuran

CEPCI Chemical Engineering Plant Cost Index

DCN derived cetane number

ICE internal combustion engine

PNFA Process Network Flux Analysis

RNFA Reaction Network Flux Analysis

SI spark ignition

VRC vapor recompression
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Greek Letters

α design target [kJ
yr

]

ν kinematic viscosity [mm2

s
]

σ surface tension [mN
m

]

Symbols

C cost [million $
yr

or $
GJfuel

]

E energy demand [MW]

GWI global warming impact [kgCO2,eq or
kgCO2,eq

GJfuel
]

H enthalpy
[

kJ
kgair,Φ=1

]

IC investment costs [million $]

NBP normal boiling point[◦C]

O2 oxygen content [wt-%]

p pressure [kPa]

T10m, T50m,

T90m

temperatures in an open batch distillation at 10, 50, 90

mol-% evaporated [◦C]

TBP true boiling point [◦C]

y integer variable [-]

z mole fraction [-]

Subscripts

1993, 2016 respective year

cum cumulated

comb combustion

d distillation temperature index

elec electricity

i component index

L liquid

overall overall
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