000873221 001__ 873221
000873221 005__ 20210130004410.0
000873221 0247_ $$2doi$$a10.1002/aenm.201803094
000873221 0247_ $$2ISSN$$a1614-6832
000873221 0247_ $$2ISSN$$a1614-6840
000873221 0247_ $$2altmetric$$aaltmetric:59348580
000873221 0247_ $$2WOS$$aWOS:000459313500008
000873221 037__ $$aFZJ-2020-00609
000873221 041__ $$aEnglish
000873221 082__ $$a050
000873221 1001_ $$0P:(DE-HGF)0$$aHua, Weibo$$b0
000873221 245__ $$aLithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 Oxides
000873221 260__ $$aWeinheim$$bWiley-VCH$$c2019
000873221 3367_ $$2DRIVER$$aarticle
000873221 3367_ $$2DataCite$$aOutput Types/Journal article
000873221 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582112418_3360
000873221 3367_ $$2BibTeX$$aARTICLE
000873221 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873221 3367_ $$00$$2EndNote$$aJournal Article
000873221 520__ $$aAs promising cathode materials, the lithium‐excess 3d‐transition‐metal layered oxides can deliver much higher capacities (>250 mAh g−1 at 0.1 C) than the current commercial layered oxide materials (≈180 mAh g−1 at 0.1 C) used in lithium ion batteries. Unfortunately, the original formation mechanism of these layered oxides during synthesis is not completely elucidated, that is, how is lithium and oxygen inserted into the matrix structure of the precursor during lithiation reaction? Here, a promising and practical method, a coprecipitation route followed by a microwave heating process, for controllable synthesis of cobalt‐free lithium‐excess layered compounds is reported. A series of the consistent results unambiguously confirms that oxygen atoms are successively incorporated into the precursor obtained by a coprecipitation process to maintain electroneutrality and to provide the coordination sites for inserted Li ions and transition metal cations via a high‐temperature lithiation. It is found that the electrochemical performances of the cathode materials are strongly related to the phase composition and preparation procedure. The monoclinic layered Li[Li0.2Ni0.2Mn0.6]O2 cathode materials with state‐of‐the‐art electrochemical performance and comparably high discharge capacities of 171 mAh g−1 at 10 C are obtained by microwave annealing at 750 °C for 2 h.
000873221 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000873221 588__ $$aDataset connected to CrossRef
000873221 7001_ $$0P:(DE-HGF)0$$aChen, Mingzhe$$b1
000873221 7001_ $$0P:(DE-HGF)0$$aSchwarz, Björn$$b2$$eCorresponding author
000873221 7001_ $$0P:(DE-HGF)0$$aKnapp, Michael$$b3
000873221 7001_ $$0P:(DE-HGF)0$$aBruns, Michael$$b4
000873221 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b5
000873221 7001_ $$0P:(DE-HGF)0$$aYang, Xiushan$$b6$$eCorresponding author
000873221 7001_ $$0P:(DE-HGF)0$$aSigel, Florian$$b7
000873221 7001_ $$0P:(DE-HGF)0$$aAzmi, Raheleh$$b8
000873221 7001_ $$0P:(DE-HGF)0$$aSenyshyn, Anatoliy$$b9
000873221 7001_ $$0P:(DE-HGF)0$$aMissiul, Alkesandr$$b10
000873221 7001_ $$0P:(DE-HGF)0$$aSimonelli, Laura$$b11
000873221 7001_ $$0P:(DE-HGF)0$$aEtter, Martin$$b12
000873221 7001_ $$0P:(DE-HGF)0$$aWang, Suning$$b13
000873221 7001_ $$0P:(DE-HGF)0$$aMu, Xiaoke$$b14
000873221 7001_ $$0P:(DE-HGF)0$$aFiedler, Andy$$b15
000873221 7001_ $$0P:(DE-HGF)0$$aBinder, Joachim R.$$b16
000873221 7001_ $$0P:(DE-HGF)0$$aGuo, Xiaodong$$b17
000873221 7001_ $$0P:(DE-HGF)0$$aChou, Shulei$$b18
000873221 7001_ $$0P:(DE-HGF)0$$aZhong, Benhe$$b19
000873221 7001_ $$0P:(DE-HGF)0$$aIndris, Sylvio$$b20
000873221 7001_ $$0P:(DE-HGF)0$$aEhrenberg, Helmut$$b21
000873221 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.201803094$$gVol. 9, no. 8, p. 1803094 -$$n8$$p1803094 -$$tAdvanced energy materials$$v9$$x1614-6832$$y2019
000873221 8564_ $$uhttps://juser.fz-juelich.de/record/873221/files/Hua_et_al-2019-Advanced_Energy_Materials.pdf$$yRestricted
000873221 8564_ $$uhttps://juser.fz-juelich.de/record/873221/files/Hua_et_al-2019-Advanced_Energy_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873221 909CO $$ooai:juser.fz-juelich.de:873221$$pVDB
000873221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b5$$kFZJ
000873221 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000873221 9141_ $$y2020
000873221 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873221 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873221 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2017
000873221 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873221 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873221 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873221 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873221 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873221 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873221 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000873221 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV ENERGY MATER : 2017
000873221 920__ $$lyes
000873221 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000873221 980__ $$ajournal
000873221 980__ $$aVDB
000873221 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000873221 980__ $$aUNRESTRICTED