001     873221
005     20210130004410.0
024 7 _ |a 10.1002/aenm.201803094
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a altmetric:59348580
|2 altmetric
024 7 _ |a WOS:000459313500008
|2 WOS
037 _ _ |a FZJ-2020-00609
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Hua, Weibo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 Oxides
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582112418_3360
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As promising cathode materials, the lithium‐excess 3d‐transition‐metal layered oxides can deliver much higher capacities (>250 mAh g−1 at 0.1 C) than the current commercial layered oxide materials (≈180 mAh g−1 at 0.1 C) used in lithium ion batteries. Unfortunately, the original formation mechanism of these layered oxides during synthesis is not completely elucidated, that is, how is lithium and oxygen inserted into the matrix structure of the precursor during lithiation reaction? Here, a promising and practical method, a coprecipitation route followed by a microwave heating process, for controllable synthesis of cobalt‐free lithium‐excess layered compounds is reported. A series of the consistent results unambiguously confirms that oxygen atoms are successively incorporated into the precursor obtained by a coprecipitation process to maintain electroneutrality and to provide the coordination sites for inserted Li ions and transition metal cations via a high‐temperature lithiation. It is found that the electrochemical performances of the cathode materials are strongly related to the phase composition and preparation procedure. The monoclinic layered Li[Li0.2Ni0.2Mn0.6]O2 cathode materials with state‐of‐the‐art electrochemical performance and comparably high discharge capacities of 171 mAh g−1 at 10 C are obtained by microwave annealing at 750 °C for 2 h.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chen, Mingzhe
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schwarz, Björn
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Knapp, Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bruns, Michael
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Barthel, Juri
|0 P:(DE-Juel1)130525
|b 5
700 1 _ |a Yang, Xiushan
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Sigel, Florian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Azmi, Raheleh
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Senyshyn, Anatoliy
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Missiul, Alkesandr
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Simonelli, Laura
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Etter, Martin
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Wang, Suning
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Mu, Xiaoke
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Fiedler, Andy
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Binder, Joachim R.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Guo, Xiaodong
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Chou, Shulei
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Zhong, Benhe
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Indris, Sylvio
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Ehrenberg, Helmut
|0 P:(DE-HGF)0
|b 21
773 _ _ |a 10.1002/aenm.201803094
|g Vol. 9, no. 8, p. 1803094 -
|0 PERI:(DE-600)2594556-7
|n 8
|p 1803094 -
|t Advanced energy materials
|v 9
|y 2019
|x 1614-6832
856 4 _ |u https://juser.fz-juelich.de/record/873221/files/Hua_et_al-2019-Advanced_Energy_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/873221/files/Hua_et_al-2019-Advanced_Energy_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:873221
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130525
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV ENERGY MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21