000873294 001__ 873294
000873294 005__ 20210130004411.0
000873294 0247_ $$2doi$$a10.3762/bjnano.10.171
000873294 0247_ $$2Handle$$a2128/24056
000873294 0247_ $$2altmetric$$aaltmetric:65245329
000873294 0247_ $$2pmid$$apmid:31501747
000873294 0247_ $$2WOS$$aWOS:000482478300001
000873294 037__ $$aFZJ-2020-00612
000873294 082__ $$a620
000873294 1001_ $$00000-0002-1143-4205$$aSimon, Ilka$$b0
000873294 245__ $$aSynthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids
000873294 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2019
000873294 3367_ $$2DRIVER$$aarticle
000873294 3367_ $$2DataCite$$aOutput Types/Journal article
000873294 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580204415_29797
000873294 3367_ $$2BibTeX$$aARTICLE
000873294 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873294 3367_ $$00$$2EndNote$$aJournal Article
000873294 520__ $$aNiGa is a catalyst for the semihydrogenation of alkynes. Here we show the influence of different dispersion times before microwave-induced decomposition of the precursors on the phase purity, as well as the influence of the time of microwave-induced decomposition on the crystallinity of the NiGa nanoparticles. Microwave-induced co-decomposition of all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in the ionic liquid [BMIm][NTf2] selectively yields small intermetallic Ni/Ga nanocrystals of 5 ± 1 nm as derived from transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and supported by energy-dispersive X-ray spectrometry (EDX), selected-area energy diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). NiGa@[BMIm][NTf2] catalyze the semihydrogenation of 4-octyne to 4-octene with 100% selectivity towards (E)-4-octene over five runs, but with poor conversion values. IL-free, precipitated NiGa nanoparticles achieve conversion values of over 90% and selectivity of 100% towards alkene over three runs.
000873294 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000873294 588__ $$aDataset connected to CrossRef
000873294 7001_ $$0P:(DE-HGF)0$$aHornung, Julius$$b1
000873294 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b2$$ufzj
000873294 7001_ $$0P:(DE-Juel1)130168$$aThomas, Jörg$$b3$$ufzj
000873294 7001_ $$00000-0002-6098-7148$$aFinze, Maik$$b4
000873294 7001_ $$00000-0002-7532-5286$$aFischer, Roland A$$b5
000873294 7001_ $$00000-0002-6288-9605$$aJaniak, Christoph$$b6$$eCorresponding author
000873294 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.10.171$$gVol. 10, p. 1754 - 1767$$p1754 - 1767$$tBeilstein journal of nanotechnology$$v10$$x2190-4286$$y2019
000873294 8564_ $$uhttps://juser.fz-juelich.de/record/873294/files/2190-4286-10-171.pdf$$yOpenAccess
000873294 8564_ $$uhttps://juser.fz-juelich.de/record/873294/files/2190-4286-10-171.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873294 909CO $$ooai:juser.fz-juelich.de:873294$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873294 9101_ $$0I:(DE-HGF)0$$60000-0002-1143-4205$$aExternal Institute$$b0$$kExtern
000873294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b2$$kFZJ
000873294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130168$$aForschungszentrum Jülich$$b3$$kFZJ
000873294 9101_ $$0I:(DE-HGF)0$$60000-0002-6098-7148$$aExternal Institute$$b4$$kExtern
000873294 9101_ $$0I:(DE-HGF)0$$60000-0002-7532-5286$$aExternal Institute$$b5$$kExtern
000873294 9101_ $$0I:(DE-HGF)0$$60000-0002-6288-9605$$aExternal Institute$$b6$$kExtern
000873294 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000873294 9141_ $$y2019
000873294 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873294 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873294 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2017
000873294 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000873294 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000873294 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873294 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873294 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873294 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873294 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000873294 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873294 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873294 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000873294 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873294 920__ $$lyes
000873294 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000873294 980__ $$ajournal
000873294 980__ $$aVDB
000873294 980__ $$aUNRESTRICTED
000873294 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000873294 9801_ $$aFullTexts