000873295 001__ 873295
000873295 005__ 20210130004411.0
000873295 0247_ $$2doi$$a10.1039/C9NJ03622A
000873295 0247_ $$2ISSN$$a0398-9836
000873295 0247_ $$2ISSN$$a1144-0546
000873295 0247_ $$2ISSN$$a1369-9261
000873295 0247_ $$2WOS$$aWOS:000493080000018
000873295 037__ $$aFZJ-2020-00613
000873295 041__ $$aEnglish
000873295 082__ $$a540
000873295 1001_ $$00000-0002-2369-9331$$aSchmolke, Laura$$b0
000873295 245__ $$aBimetallic Co/Al nanoparticles in an ionic liquid: synthesis and application in alkyne hydrogenation
000873295 260__ $$aLondon$$bRSC$$c2019
000873295 3367_ $$2DRIVER$$aarticle
000873295 3367_ $$2DataCite$$aOutput Types/Journal article
000873295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582125832_3361
000873295 3367_ $$2BibTeX$$aARTICLE
000873295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873295 3367_ $$00$$2EndNote$$aJournal Article
000873295 520__ $$aHerein, we report the microwave-induced decomposition of various organometallic cobalt and aluminum precursors in an ionic liquid (IL), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIm]NTf2), resulting in Co/Al nanoalloys with different molar Co/Al ratios. The dual-source precursor system of dicobalt octacarbonyl (Co2(CO)8) and pentamethylcyclopentadienyl aluminum ([AlCp*]4) in [BMIm]NTf2 afforded CoAl nanoparticles (CoAl-NPs) with a molar Co/Al ratio of 1 : 1. Their size and size distribution were determined via transmission electron microscopy (TEM) to be an average diameter of 3.0 ± 0.5 nm. Furthermore, the dual-source precursor system of cobalt amidinate ([Co(iPr2-MeAMD)2]) and aluminum amidinate [Me2Al(iPr2-MeAMD)] in molar ratios of 1 : 1 and 3 : 1 resulted in CoAl- and Co3Al-NPs with an average diameter of 3 ± 1 and 2.0 ± 0.2 nm, respectively. All the obtained materials were characterized via TEM, energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), together with high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and (high-resolution) X-ray photoelectron spectroscopy ((HR-)XPS). Phase-pure Co/Al-NPs were not obtained since the concomitant formation of Co-NPs and Al2O3 occurred in this wet-chemical synthesis. The as-prepared Co/Al nanoalloys were evaluated as catalysts in the hydrogenation of phenylacetylene under mild conditions (2 bar H2, 30 °C in THF). In comparison to the monometallic Co-NPs, the Co/Al-NPs showed a significantly higher catalytic hydrogenation activity. The Co- and Co/Al-NPs were also active under harsher reaction conditions (80 bar H2, 80 °C) without the addition of the activating co-catalyst DIBAL-H.
000873295 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000873295 588__ $$aDataset connected to CrossRef
000873295 7001_ $$0P:(DE-HGF)0$$aGregori, Bernhard J.$$b1
000873295 7001_ $$0P:(DE-HGF)0$$aGiesen, Beatriz$$b2
000873295 7001_ $$00000-0002-1075-4194$$aSchmitz, Alexa$$b3
000873295 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b4
000873295 7001_ $$0P:(DE-HGF)0$$aStaiger, Lena$$b5
000873295 7001_ $$00000-0002-7532-5286$$aFischer, Roland A.$$b6
000873295 7001_ $$00000-0001-7462-0745$$aJacobi von Wangelin, Axel$$b7$$eCorresponding author
000873295 7001_ $$00000-0002-6288-9605$$aJaniak, Christoph$$b8$$eCorresponding author
000873295 773__ $$0PERI:(DE-600)1472933-7$$a10.1039/C9NJ03622A$$gVol. 43, no. 42, p. 16583 - 16594$$n42$$p16583 - 16594$$tNew journal of chemistry$$v43$$x1369-9261$$y2019
000873295 8564_ $$uhttps://juser.fz-juelich.de/record/873295/files/c9nj03622a.pdf$$yRestricted
000873295 8564_ $$uhttps://juser.fz-juelich.de/record/873295/files/c9nj03622a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000873295 909CO $$ooai:juser.fz-juelich.de:873295$$pVDB
000873295 9101_ $$0I:(DE-HGF)0$$60000-0002-2369-9331$$aExternal Institute$$b0$$kExtern
000873295 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000873295 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000873295 9101_ $$0I:(DE-HGF)0$$60000-0002-1075-4194$$aExternal Institute$$b3$$kExtern
000873295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b4$$kFZJ
000873295 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000873295 9101_ $$0I:(DE-HGF)0$$60000-0001-7462-0745$$aExternal Institute$$b7$$kExtern
000873295 9101_ $$0I:(DE-HGF)0$$60000-0002-6288-9605$$aExternal Institute$$b8$$kExtern
000873295 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000873295 9141_ $$y2020
000873295 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000873295 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873295 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000873295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J CHEM : 2017
000873295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873295 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873295 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873295 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873295 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873295 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873295 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873295 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873295 920__ $$lyes
000873295 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000873295 980__ $$ajournal
000873295 980__ $$aVDB
000873295 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000873295 980__ $$aUNRESTRICTED