000873300 001__ 873300
000873300 005__ 20240711113922.0
000873300 0247_ $$2Handle$$a2128/24182
000873300 0247_ $$2URN$$aurn:nbn:de:0001-2020102057
000873300 0247_ $$2ISSN$$a1866-1793
000873300 020__ $$a978-3-95806-453-9
000873300 037__ $$aFZJ-2020-00618
000873300 1001_ $$0P:(DE-Juel1)169485$$aOelmann, Jannis$$b0$$eCorresponding author$$gmale$$ufzj
000873300 245__ $$aQuantitative Untersuchung des Laserablationsprozesses mittels Kombination von optischer Spektroskopie und Massenspektrometrie$$f- 2019-11-12
000873300 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2020
000873300 300__ $$aX, 141 S.
000873300 3367_ $$2DataCite$$aOutput Types/Dissertation
000873300 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000873300 3367_ $$2ORCID$$aDISSERTATION
000873300 3367_ $$2BibTeX$$aPHDTHESIS
000873300 3367_ $$02$$2EndNote$$aThesis
000873300 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1580817530_4614
000873300 3367_ $$2DRIVER$$adoctoralThesis
000873300 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v486
000873300 502__ $$aUniversität Bochum, Diss., 2019$$bDr.$$cUniversität Bochum$$d2019
000873300 520__ $$aThis dissertation assesses the process of laser-induced ablation using picosecond laser pulses by applying it to different materials. The introduction reviews the theoretical background of the different ablation mechanisms, which are classified according to the used laser parameters. Following that, the ablation is characterized by employing various experimental methods: the crater formation resulting from successive ablation and the material-depending ablation rates are determined by analyzing the crater structures. Moreover, an experimental setup for the study of laser-induced ablation in vacuum, which has been built in the course of this work, is presented. This setup enables the simultaneous appliance of mass spectrometry and complementary optical spectroscopy. The analyses of a thin film solar cell and a C/Ti/Mo-layer structure demonstrate that depth-resolved sample characterization is possible with laser-induced ablation using picosecond pulse durations. Results show that the ablation rates within one sample layer are proportional to the applied pulse energy. In spite of the short pulse duration of τ$_{L}$ = 35 ps, thermal effects are observed in the ablation process: the crater size depends on the laser pulse energy and material is redeposited around the crater in the laser-induced ablation process. Laser parameters like pulse energy and diameter are optimized for the determination of hydrogen content in fusion-relevant materials via a residual gas analysis and a simultaneously performed laser-induced breakdown spectroscopy. An investigation of the laser-induced fragmentation of an amorphous hydrogenated carbon layer (a–C:H) shows that one third of the total hydrogen content is found in hydrocarbons after ablation. This needs to be included in a quantitative sample analysis. For the first time, the depth-resolved hydrogen content in graphite tiles, which were exposed in the fusion test facility Wendelstein 7-X, could be measured quantitatively in ex-situ analysis. The integrated signals show good agreement with thermal desorption spectroscopy measurements. Aiming at applying the developed measurement technique in a future fusion reactor, first results of deuterium retention analyses in graphite and tungsten are presented. These show particle densities in the order of 10$^{19}$ $^{D}$ $^{Atome/_{cm}}$ $^{3}$ vorgestellt.
000873300 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000873300 8564_ $$uhttps://juser.fz-juelich.de/record/873300/files/Energie_Umwelt_486.pdf$$yOpenAccess
000873300 909CO $$ooai:juser.fz-juelich.de:873300$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000873300 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873300 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873300 9141_ $$y2020
000873300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169485$$aForschungszentrum Jülich$$b0$$kFZJ
000873300 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000873300 920__ $$lyes
000873300 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000873300 9801_ $$aFullTexts
000873300 980__ $$aphd
000873300 980__ $$aVDB
000873300 980__ $$aUNRESTRICTED
000873300 980__ $$abook
000873300 980__ $$aI:(DE-Juel1)IEK-4-20101013
000873300 981__ $$aI:(DE-Juel1)IFN-1-20101013