000873312 001__ 873312
000873312 005__ 20220930130229.0
000873312 0247_ $$2doi$$a10.1093/insilicoplants/diaa001
000873312 0247_ $$2Handle$$a2128/24847
000873312 0247_ $$2altmetric$$aaltmetric:74272589
000873312 0247_ $$2WOS$$aWOS:000713308400001
000873312 037__ $$aFZJ-2020-00630
000873312 041__ $$aEnglish
000873312 082__ $$a004
000873312 1001_ $$0P:(DE-Juel1)173813$$aZhou, Xiao-Ran$$b0
000873312 245__ $$aCPlantBox, a whole plant modelling framework for the simulation of water and carbon related processes
000873312 260__ $$a[Oxford]$$bOxford University Press$$c2020
000873312 3367_ $$2DRIVER$$aarticle
000873312 3367_ $$2DataCite$$aOutput Types/Journal article
000873312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1589217037_15654
000873312 3367_ $$2BibTeX$$aARTICLE
000873312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873312 3367_ $$00$$2EndNote$$aJournal Article
000873312 520__ $$aThe interaction between carbon and flows within the vasculature is at the center of most growth and developmental processes. Understanding how these fluxes influence each other, and how they respond to heterogeneous environmental conditions, is important to answer diverse questions in agricultural and natural ecosystem sciences. However, due to the high complexity of the plant-environment system, specific tools are needed to perform such quantitative analyses.Here we present CPlantBox, a whole plant modelling framework based on the root system model CRootBox. CPlantbox is capable of simulating the growth and development of a variety of plant architectures (root and shoot). In addition, the flexibility of CPlantBox enables its coupling with external modeling tools. Here, we connected the model to an existing mechanistic model of water and carbon flows in the plant, PiafMunch.The usefulness of the CPlantBox modelling framework is exemplified in five case studies. Firstly, we illustrate the range of plant structures that can be simulated using CPlantBox. In the second example, we simulated diurnal carbon and water flows, which corroborates published experimental data. In the third case study, we simulated impacts of heterogeneous environment on carbon and water flows. Finally, we showed that our modelling framework can be used to fit phloem pressure and flow speed to (published) experimental data.The CPlantBox modelling framework is open-source, highly accessible and flexible. Its aim is to provide a quantitative framework for the understanding of plant-environment interaction.
000873312 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000873312 588__ $$aDataset connected to CrossRef
000873312 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b1$$ufzj
000873312 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b2$$ufzj
000873312 7001_ $$0P:(DE-HGF)0$$aLeitner, Daniel$$b3
000873312 7001_ $$0P:(DE-HGF)0$$aLacointe, André$$b4
000873312 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000873312 7001_ $$0P:(DE-Juel1)171180$$aLobet, Guillaume$$b6$$eCorresponding author$$ufzj
000873312 773__ $$0PERI:(DE-600)3019806-9$$a10.1093/insilicoplants/diaa001$$gp. diaa001$$n1$$pdiaa001$$tIn silico plants$$v2$$x2517-5025$$y2020
000873312 8564_ $$uhttps://juser.fz-juelich.de/record/873312/files/diaa001-1.pdf$$yOpenAccess
000873312 8564_ $$uhttps://juser.fz-juelich.de/record/873312/files/diaa001.pdf$$yOpenAccess
000873312 8564_ $$uhttps://juser.fz-juelich.de/record/873312/files/diaa001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873312 8564_ $$uhttps://juser.fz-juelich.de/record/873312/files/diaa001-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873312 8767_ $$d2020-02-21$$eAPC$$jDeposit$$lDeposit: OUP$$zapproved 17.1.20, status paid
000873312 909CO $$ooai:juser.fz-juelich.de:873312$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000873312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173813$$aForschungszentrum Jülich$$b0$$kFZJ
000873312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b1$$kFZJ
000873312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b2$$kFZJ
000873312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000873312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171180$$aForschungszentrum Jülich$$b6$$kFZJ
000873312 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000873312 9141_ $$y2020
000873312 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873312 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873312 920__ $$lyes
000873312 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000873312 980__ $$ajournal
000873312 980__ $$aVDB
000873312 980__ $$aUNRESTRICTED
000873312 980__ $$aI:(DE-Juel1)IBG-3-20101118
000873312 980__ $$aAPC
000873312 9801_ $$aAPC
000873312 9801_ $$aFullTexts