000873324 001__ 873324
000873324 005__ 20240712112824.0
000873324 0247_ $$2doi$$a10.1016/j.jmr.2020.106688
000873324 0247_ $$2ISSN$$a0022-2364
000873324 0247_ $$2ISSN$$a1090-7807
000873324 0247_ $$2ISSN$$a1096-0856
000873324 0247_ $$2ISSN$$a1557-8968
000873324 0247_ $$2Handle$$a2128/24325
000873324 0247_ $$2altmetric$$aaltmetric:74245812
000873324 0247_ $$2pmid$$apmid:32004819
000873324 0247_ $$2WOS$$aWOS:000518469000002
000873324 037__ $$aFZJ-2020-00642
000873324 082__ $$a530
000873324 1001_ $$0P:(DE-Juel1)172737$$aPark, Heeyong$$b0$$eCorresponding author$$ufzj
000873324 245__ $$aHeteronuclear cross-relaxation effect modulated by the dynamics of N-functional groups in the solid state under 15N DP-MAS DNP
000873324 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000873324 3367_ $$2DRIVER$$aarticle
000873324 3367_ $$2DataCite$$aOutput Types/Journal article
000873324 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581424209_10548
000873324 3367_ $$2BibTeX$$aARTICLE
000873324 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000873324 3367_ $$00$$2EndNote$$aJournal Article
000873324 520__ $$aIn a typical magic-angle spinning (MAS) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiment, several mechanisms are simultaneously involved when transferring much larger polarization of electron spins to NMR active nuclei of interest. Recently, specific cross-relaxation enhancement by active motions under DNP (SCREAM-DNP) [Daube et al. JACS 2016] has been reported as one of these mechanisms. Thereby 13C enhancement with inverted sign was observed in a direct polarization (DP) MAS DNP experiment, caused by reorientation dynamics of methyl that was not frozen out at 100 K. Here, we report on the spontaneous polarization transfer from hyperpolarized 1H to both primary amine and ammonium nitrogens, resulting in an additional positive signal enhancement in the 15N NMR spectra during 15N DP-MAS DNP. The cross-relaxation induced signal enhancement (CRE) for 15N is of opposite sign compared to that observed for 13C due to the negative sign of the gyromagnetic ratio of 15N. The influence on CRE efficiency caused by variation of the radical solution composition and by temperature was also investigated.
000873324 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000873324 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000873324 588__ $$aDataset connected to CrossRef
000873324 7001_ $$0P:(DE-Juel1)161489$$aUluca-Yazgi, Boran$$b1$$ufzj
000873324 7001_ $$0P:(DE-HGF)0$$aHeumann, Saskia$$b2
000873324 7001_ $$0P:(DE-HGF)0$$aSchlögl, Robert$$b3
000873324 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b4$$ufzj
000873324 7001_ $$0P:(DE-Juel1)132002$$aHeise, Henrike$$b5$$ufzj
000873324 7001_ $$0P:(DE-Juel1)168465$$aSchleker, Peter Philipp Maria$$b6$$ufzj
000873324 773__ $$0PERI:(DE-600)1469665-4$$a10.1016/j.jmr.2020.106688$$gp. 106688 -$$p106688 -$$tJournal of magnetic resonance$$v312$$x1090-7807$$y2020
000873324 8564_ $$uhttps://juser.fz-juelich.de/record/873324/files/Heteronuclear%20cross-relaxation%20effect%20modulated%20by%20the%20dynamics%20of%20N-functional%20groups%20in%20the%20solid%20state%20under%2015N%20DP-MAS%20DNP.pdf$$yOpenAccess
000873324 8564_ $$uhttps://juser.fz-juelich.de/record/873324/files/Heteronuclear%20cross-relaxation%20effect%20modulated%20by%20the%20dynamics%20of%20N-functional%20groups%20in%20the%20solid%20state%20under%2015N%20DP-MAS%20DNP.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000873324 909CO $$ooai:juser.fz-juelich.de:873324$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000873324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172737$$aForschungszentrum Jülich$$b0$$kFZJ
000873324 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172737$$aRWTH Aachen$$b0$$kRWTH
000873324 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172737$$aMax Planck Institut Mülheim $$b0
000873324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161489$$aForschungszentrum Jülich$$b1$$kFZJ
000873324 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161489$$a Heinrich Heine Universität Düssedorf$$b1
000873324 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aMax Planck Institut Mülheim $$b2
000873324 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aMax Planck Institut Mülheim $$b3
000873324 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Fritz Haber Institute Max Planck Society$$b3
000873324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b4$$kFZJ
000873324 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b4$$kRWTH
000873324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132002$$aForschungszentrum Jülich$$b5$$kFZJ
000873324 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)132002$$a Heinrich Heine Universität Düsseldorf$$b5
000873324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168465$$aForschungszentrum Jülich$$b6$$kFZJ
000873324 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)168465$$aMax Planck Institut Mülheim $$b6
000873324 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000873324 9141_ $$y2020
000873324 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000873324 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000873324 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000873324 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000873324 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON : 2017
000873324 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000873324 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000873324 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000873324 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000873324 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000873324 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000873324 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000873324 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000873324 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000873324 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000873324 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000873324 920__ $$lyes
000873324 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000873324 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x1
000873324 9801_ $$aFullTexts
000873324 980__ $$ajournal
000873324 980__ $$aVDB
000873324 980__ $$aUNRESTRICTED
000873324 980__ $$aI:(DE-Juel1)IEK-9-20110218
000873324 980__ $$aI:(DE-Juel1)ICS-6-20110106
000873324 981__ $$aI:(DE-Juel1)IET-1-20110218
000873324 981__ $$aI:(DE-Juel1)IBI-7-20200312